
On forks and fork characteristics in a Bitcoin-like
distribution network

Vojislav B. Mišić⇤, Jelena Mišić⇤, and Xiaolin Chang†
⇤Ryerson University, Toronto, ON, Canada
†Beijing Jiaotong University, Beijing, China

Abstract—Chain growth in a permissionless blockchain-based
ledger is mostly defined by the characteristics of the distribution
network and the chosen consensus protocol. In this paper, we
investigate the performance of block propagation in a Bitcoin-like
peer-to-peer distribution network, and highlight the impact of
the Nakamoto consensus protocol on the dynamics of blockchain
growth. We use a simulated network with nodes located in
different geographic regions, each with its own propagation
characteristics; the values of network parameters are chosen to
match available data for the Bitcoin peer-to-peer network. We
show that the latency of block propagation is mainly affected
by the mean round-trip time; that forks occur more often when
mean round-trip time is longer, and that the ratio of the number
of nodes opting for one or the other of competing blocks as
the main chain tip can occur in almost any ratio; finally, that
the mean time to resolve a fork is approximately equal to block
inter-arrival time.

Index Terms—blockchain; peer-to-peer network;

I. INTRODUCTION

Haber and Stornetta were the first to describe the concept
of blockchain [10], a data structure suitable for implementing
systems that require ‘a decentralized, replicated, immutable
and tamper-evident log’ [1] of a series of transactions or
documents. Possibly the best known application of blockchain
is Bitcoin [18], a digital cryptocurrency that uses blockchain as
the replicated ledger with information about monetary trans-
actions. User identity is protected through a public-private key
cryptosystem but the actual contents of transactions are kept
public. Bitcoin blocks are generated using the Proof-of-Work
(PoW) approach [24] that involves solving a cryptographic
puzzle, the difficulty of which is periodically adjusted to
maintain a constant (and, perhaps, artificially low) average rate
of block mining.

A number of problems are inherent to the structure of
Bitcoin blockchain and its consensus protocol. Perhaps the best
known such problem is forking which refers to the scenario,
shown in Fig. 1, in which two (or more) apparently valid
blocks propagate through the network in a short period of time,
and different nodes install one or the other as the main tip of
their individual blockchains. A fork may even be extended if
new blocks are mined that build on different fork branches.
In this manner, the distributed ledger is temporarily rendered
inconsistent, and the consensus protocol does not offer an easy
way to determine which of these is valid and which is not. As
the result, there is a possibility for a number of different secu-
rity attacks [8]. The fork is eventually resolved by accepting
the ‘longest chain, which has the greatest proof-of-work effort

node

block
X

block
Y

...

current 
main tip

first-received block 
becomes new main tip

block received later 
becomes a side tip

Fig. 1. A fork occurs when different nodes receive different but otherwise
valid blocks at nearly the same time.

invested in it’ as the correct one [18]; alternatively, the chain
with the most accumulated PoW effort (which may or may
not be the longest sub-chain) may be chosen [23].

In this paper, we examine the process of generation of forks
in a Bitcoin-like P2P delivery network and their characteristics.
The analysis is performed on a purpose-built simulator of
Bitcoin-like delivery network with 5,000 nodes. Simulation
was chosen over measurement for reasons of coverage and
flexibility, as we can observe all nodes at all times which
is impossible in the real network; moreover, measurement-
based approaches cause a disruption in network operation, the
impact of which cannot be fully known. Our results show that
(a) the latency of block propagation is mainly affected by the
mean round-trip time; (b) the frequency of fork occurrence is
correlated with data round-trip time – forks occur more often
when mean round-trip time is longer; (c) when a fork occurs,
partitioning of the node set according to the block chosen as
the main chain tip can occur in almost any ratio; and (d) mean
time to resolve a fork is close to block inter-arrival time.

The rest of the paper is organized as follows. Section II
presents most relevant related work. Sections III and IV
describe the operation of the Bitcoin blockchain and block
management in more detail, including processing of confirmed
blocks and the mechanism of fork generation. Section V
presents our simulation setup, while Section VI presents and
discusses our main findings. Finally, Section VII concludes
the work and summarizes some avenues for further research.

II. RELATED WORK

A number of reports related to measurements of various
aspects of the Bitcoin network have appeared in past several



2

years. Combinations of data regarding network size, geograph-
ical distribution of nodes, number of connections per node, and
block and transaction statistics were reported in [2], [5], [7],
[16], [22]. Measurements of round trip times (RTT), coupled
with node distribution in the Bitcoin (BTC) network with
vantage point in Vienna, Austria, were reported in [2]. It is
worth noting that all reported works used measurement tools
which had interfered to some extent with genuine activities in
the BTC network.

One of the first and most influential works in measuring
performance of data distribution algorithms for BTC network
was reported in [4]. Results suggest that block distribution
time is exponentially distributed and that forking probability
was about 1.8% under 100kbps of TCP connection throughput
but with unclear values of node connectivity, RTT distribution,
and network size. Also, [14] provides a wealth of technical as
well as non-technical data.

The Bitcoin data distribution protocol actually resembles
randomized rumor spreading [11], but without full network
connectivity and random choice of peers for each transmission
by the source. Available literature about data distribution
paradigm uses different yet related protocols. For example,
[21] considers broadcast and flooding, [4], [6] use a gossip
(i.e., controlled flooding) based algorithm, and [20] consid-
ers both kinds of data distribution protocols. However, pure
broadcast protocol tends to be non-scalable to large networks
under ever increasing transaction traffic.

A queuing theoretic analysis has been undertaken in [21],
although their simulation results have been obtained for ex-
tremely limited scale scenarios with 2 and 5 nodes.

The importance of understanding the network layer of the
Bitcoin blockchain in order to prevent security attacks is
discussed in [6], [20].

III. OPERATION OF THE BITCOIN BLOCKCHAIN

Blockchain is a data structure composed of blocks with
arbitrary content. Each block is identified by its hash, which
is used to identify the previous block in the chain so that
the blocks effectively form a backward linked list. The first
(oldest) block is oftentimes referred to as ‘genesis’ block and
it is created by the software package that manages the chain
[18].

Tamper-detection capability, often incorrectly referred to as
‘immutability,’ is provided by adding the Merkle or hash tree
[15], a binary tree in which leaves are actual transactions, and
nodes higher up in the tree are formed by hashing the hashes
of the two nodes below. The root of the Merkle tree is added
to the header of each block, thus providing an easy way to
check whether the transactions have been tampered with.

In addition to the Merkle tree root, block header contains
the previous block hash, timestamp of block creation, as well
as current difficulty level and nonce – parameters related to the
mining process. Blocks are then linked in a list interconnected
through hashes that point to the previous block.

The node that has generated a transaction or mined a block
distributes it to its peers, who distribute it to their peers, and
so on, until the transaction or block reach the entire network.

The distribution process is performed as a series of unicast
communications in which the source node queries its peers,
one by one, with inventory (INV) messages to check if they
have the item in question. Peers that know about the item
remain silent, while those that don’t know it respond with
a GETDATA message requesting the data item. The source
node then sends the data item in the appropriate message
(TRANSACTION or BLOCK). Newly received transactions
are checked and, if found to be valid, added to the mempool of
a node, a pool of validated transactions waiting to be confirmed
through inclusion in a block. Newly received blocks and the
transactions they contain are checked and, if found to be valid,
added to the local blockchain.

Synchronization of ledger replicas is achieved through a
Proof-of-Work-based decentralized consensus protocol, often
referred to as the Nakamoto consensus [1]. In this protocol,
nodes known as ‘miners’ choose from their mempools a set
of transactions that fit into a single block and then try to
solve a cryptographic puzzle based on that block. Once the
desired solution is found, the miner node announces the new
block to other nodes. When a node learns about the new
block, they obtain it, verify its contents and the solution of
the puzzle and, if confirmed, append the newly mined block to
their blockchains. This process may take some time depending
on the number of nodes – there is no central authority to
confirm a block, and participation in a Bitcoin network is
effectively open to everyone. This approach is known as
‘permissionless,’ as opposed to ‘permissioned’ in which only
the nodes explicitly authorized by a trusted authority may take
part in blockchain operation and maintenance.

IV. BLOCKCHAIN MANAGEMENT AND FORKS

A. On forks in the blockchain

Block propagation takes precedence over mining, as an
ongoing process of mining a block will be abandoned if the
node receives a new block. If a node manages to mine a block,
say, Z, and begins distributing it before another recently mined
block, say, U , which has been propagated to all the nodes. In
this case, some nodes will append U as the main tip and Z as
the side tip while others will do the opposite – the situation
known as fork.

Forks are problematic since the distributed architecture of
the Bitcoin blockchain makes it impossible for a node to figure
out which of the two otherwise legitimate blocks should be
used to extend the chain. Asking one’s peers does not help
as some of them will have one block as their main tip while
the others will have the second one. (Remember that the node
has received the new block from one of its neighbors, unless
it has been mined locally.) Hence the node must retain both
blocks until the fork is eventually resolved. Moreover, compet-
ing blocks may contain contradicting transactions, including
double spending ones (i.e., those that use the same input) [18],
As the result, the ledger becomes inconsistent – yet individual
nodes are not aware of it! Of course, the set of transactions
included in two blocks mined within a short time of one
another may actually overlap. In fact, the only transaction
guaranteed to differ is the coinbase transaction through which
the miners claim the mining fee.



3

node

block
X

block
Y

block
Z

...

① newly received block 
becomes new main tip

mempool

② transactions from the 
new main tip removed 

from the mempool

(a) Normally, a new block extends the current main
tip and its transactions are removed from the local
mempool.

node

...
block

X
block

Y
block

U

block
Z

block
W

mempool

② current main tip 
becomes side tip

① transactions from 
current main tip 

returned to mempool

③ new block becomes 
main tip, extends former 

side tip

 ④ transactions from 
the former side tip and 
new main tip removed 

from the mempool

(b) A new block may extend a side tip and, if its height
exceeds that of the current main tip, switch places with the
main tip.

Fig. 2. Pertaining to fork processing.

The only way to resolve a fork is by receiving the next
block and appending it to the chain. This block will connect
to the main tip or one of the side tips, depending on whether
the node that mined it had one or the other block as its main
tip. We note that the chain may contain one or more side tips
at the same height as the main tip, if three or more blocks had
been mined within a short time period and sent out before any
of them has been propagated through the network.

Furthermore, a fork may extend for more than a single
block, as subsequent blocks may extend the main or the side
tip – forks of length of up to four have been recorded in the
Bitcoin blockchain [16].

B. Processing of a newly arrived block

To explain in detail the process of adding blocks to the
blockchain, we will use the following notation:

• B is the newly arrived block, and B.previous is its pre-
vious block, i.e., the block pointed to by the appropriate
hash in the header of block B;

• MainT ip refers to the current main tip – the most
recently added block at the tip of the main blockchain
stem;

• MainStem refers to the main blockchain stem, from
current MainT ip to the genesis block;

• SideT ips refers to the collection of blocks that lead
sideways from the main blockchain stem;

• Orphans refers to a list of orphan blocks that point to a
block not in the main blockchain stem; and

• height(·) is a function that returns the height of a block,
i.e., the distance from the genesis block (which is at
height zero).

The actual block confirmation protocol operates as shown
in Algorithm 1 below.

Algorithm 1: Block processing.
Data: confirmed block B

Result: updated blockchain, MainT ip, SideT ips
if B.previous 62 MainStem then

add B to Orphans;
request B.previous from B’s sender;

else
validate B;
if B.previous == MainT ip then

append B to MainT ip;
set B as MainT ip;

else if B.previous 2 sideT ips then
append B to B.previous;
if height(B.previous) == height(MainT ip)

then
remove B.previous from SideT ips;
switch MainT ip with B;

end
else

add B to SideT ips;
for o 2 Orphans do

if B == o.previous then
remove o from Orphans;
process o;

end
endfor

end
for p 2 Peers do

send B to peer p;
endfor

end

The algorithm first checks if the new block points to any of
the blocks in the main stem of the blockchain. If not, the new
block is an orphan block and it cannot be processed at this
time, as its predecessors and the transactions they contain are
unknown to the node and, consequently, cannot be verified.
Instead, it is recorded in the Orphans list and a request for
its previous block is sent to the source of the original block.

In other cases, the new block is validated, together with
its transactions. If the new block points to the current main
tip, it is appended to the blockchain at the main tip. The new
block thus becomes the new main tip of the blockchain and the
transactions it contains are removed from the local mempool,
as shown in Fig. 2(a).

The new block may also point to a block from the SideT ips

list. In this case, the new block is appended to its previous
block and its height is checked against that of the current
main tip. If the height of the new block is greater, the current
main tip is added to the SideT ips list while the new block
becomes the new main tip and its previous block is removed
from the SideT ips list. Furthermore, the transactions from
the current main tip and all of its previous blocks down to
the point of branching of the new block, are returned to the
mempool. Then, all the transactions from the new block and
its previous blocks down to the branching point are removed



4

from the mempool. This is schematically shown in Fig. 2(b)
for a branching point immediately below the current main tip.

Finally, the new block may simply point to a block below
the current main tip. In this case, the new block is added to the
list of SideT ips but without any processing of the transactions
it contains.

Ultimately, processing of a non-orphan block results in one
of the following outcomes: extension of the main tip; extension
of a side tip and, possibly, switching places with the main tip;
or creation of a new side tip.

V. EXPERIMENT SETUP

While the mechanism of fork creation is known, little has
been done to address the questions such as when do forks
appear, how long do they last, what are the sizes of node
partitions created by a fork, and the like. This is why we have
designed and performed the experiments described below.

Unfortunately, the Bitcoin system and the associated net-
work do not lend themselves easily to a comprehensive anal-
ysis. Due to their decentralized and permissionless character,
realistic network parameters can be learned only by monitoring
the network which can be achieved by using either the original
Bitcoin daemon or a functionally equivalent piece of software.
However, this approach fails in two important aspects, both of
which are well known in the Bitcoin research community.

First, due to the decentralized character of the network, one
cannot possibly observe the evolution of blockchains across all
peers. At best, a limited number of nodes can be monitored,
depending on the connectivity of the monitoring peer or peers.
If a single monitoring node can monitor only a few hundred
nodes out of about 10,000 that are connected at any given
time, the accuracy of measurements will not be high.

Second, any measurement setup that connects to the real
network will inevitably disrupt its operation. In some cases, the
monitoring nodes only use up some of the available connec-
tions and the associated bandwidth [2], [7], [16]. In this case,
measurement slightly degrades the capacity of the network but
does not affect the legitimate traffic carried therein. In other
cases, the behavior of the network is probed through insertion
of fake transactions [5]. Unfortunately, this approach uses up
the capacity but it also creates quasi-legitimate traffic which
is probably more disruptive as it interferes with the block
confirmation process, although the extent of the disruption is
not actually known.

Moreover, the information we are looking for cannot be
obtained by scraping data from the existing blockchains, be it
from a real network trace as done in [4] or using a publicly
available information such as the one found at https://www.
blockchain.com/explorer. In both cases, one can obtain just a
list of confirmed blocks and transactions, but the evolution of
individual chains remains unknown.

All of those shortcomings can be addressed through a
simulation model, in which we can observe all nodes and the
evolution of their blockchains at all times. Moreover, we can
modify the network and protocol parameters at will. Of course,
whether it is better to use measurement on the real system,
or to simulate it in a ‘laboratory’ environment, is an age-old

TABLE I
MINIMUM ROUND-TRIP TIME tmin , IN MILLISECONDS.

from a to a node in
node in Americas Europe Asia
Americas 10.0 100.0 200.0
Europe 100.0 20.0 200.0
Asia 200.0 200.0 100.0

TABLE II
MEAN VALUE OF THE VARIABLE PART OF ROUND-TRIP TIME, tmean , IN

MILLISECONDS.

from a to a node in
node in Americas Europe Asia
Americas 20 40 66.7
Europe 40 20 66.7
Asia 66.7 66.7 40

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

node connectivity

Fig. 3. Distribution of node connectivity.

question in system analysis [13]. But in this case, the coverage
and flexibility offered by the simulation model far outweigh
its downsides. It is worth noting that the simulation approach
seems rather unpopular amongst Bitcoin researchers as only a
few papers [19] used it to analyze the behavior of the Bitcoin
system.

We have built a simulator of the Bitcoin peer-to-peer net-
work and the associated protocol, using Anylogic 8.3.3 by
Anylogic, Inc., Oakbrook Terrace, IL. The simulated network
had 5,000 nodes that implement the distributed consensus
protocol outlined above. The network was run for 605,000 sec-
onds which corresponds to 7 days of simulated time. Parameter
values were chosen according to available data from research
papers and public sites such as https://www.blockchain.com/
mentioned above.

Transactions are generated at a rate of 1.25 per second
and sent to a random node in the network; the target is
chosen with equal probability from all nodes. All nodes
maintain their individual mempools and blockchains, but only
20% of them actually mine blocks – others simply collect
and disseminate transactions and blocks. For simplicity, in
this experiment all miners were assumed to have identical
hashpower. Blocks contain a random number of transactions,
uniformly distributed in the range between 500 and 2,000.



5

According to the measurements in [2], we have assumed
that 50%, 20%, and 30% of the nodes are located in Europe,
Asia, and the Americas, respectively. The distribution of peer
connectivity was determined as follows. Bitcoin node can have
up to 8 outbound peers and up to 125 inbound ones but these
numbers have nothing to do with the directionality of the link.
Namely, the protocol1 involves message transmission in both
directions, and TCP protocol is inherently bidirectional [12].
Rather, the ‘outgoing’ and ‘inbound’ labels denote the manner
in which peers learn of each other.

Consequently, our network had randomly generated connec-
tivity with the probability distribution obtained by combining a
binomial distribution and a long-tail with each node connected
to at least 5 peers, with an average of 12.01, and graph
diameter of five.

Regarding the block arrival process, it is widely assumed
that the time to complete PoW for a new block is exponentially
distributed, which means that the arrival of confirmed blocks
to the network can be modeled with a homogeneous Poisson
process [4], [8], [9], [18]. This is the assumption we have used
in our work, with the mining rate of 1 in 10 minutes (i.e., 600
seconds) which is the target for the actual Bitcoin network.
It is worth noting that a recent analysis indicates that a non-
homogenous Poisson process might be a better match due to
periodic adjustment of the difficulty to compute the nonce in
the block header [3]. However, our experiment run time was
too short to incorporate this effect into our analysis.

Block delivery time is assumed to follow exponential dis-
tribution [4], but few works have dealt with node-to-node
delivery of blocks; a recent work has shown that this time
can be described with a sub-exponential distribution [17].
Recent measurements have shown that the parameters of
this distribution depend on the geographical locations of the
sender and receiver peers [2]. We have modeled the delay
between a message and the ensuing response with td =
tm+�RTT (tmin, tmean, where tm is the actual message prop-
agation time, RTT (tmin, tmean) is a random value obtained
from an exponential distribution with a mean of tmean, shifted
to the right by tmin; both values are dependent on the locations
of the nodes, as described in Tables I and II, respectively. The
value � is a parameter which we used to scale the delay for
the entire network; our experiments used values of � = 1.5
and 0.75 to model slower and faster networks, respectively.

VI. EXPERIMENTAL RESULTS

A. Block propagation

We have recorded the time needed for a block to reach a
predefined percentage of nodes; the results are shown in Fig. 4
where the top diagram shows mean value while the bottom one
shows standard deviation of the respective variable. All times
are expressed in seconds.

As can be seen from Fig. 4(a), a major part of block
propagation time is used to reach the first 25% of the nodes.
Once that coverage is reached, the block will propagate fairly
quickly to the subsequent milestones of 50, 75, and 90 percent

1https://en.bitcoin.it/wiki/Bitcoin Core 0.11 (ch 4): P2P Network, last
accessed February 4, 2019

0

1

2

3

4

5

6

7

8

0 25 50 75 100

mean time to reach given percentage of nodes (variable delay factor)

1.5

0.75

(a) Mean time to reach a given percentage of nodes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 25 50 75 100
standard deviation of time to reach given percentage of nodes 

(variable delay factor)

1.5

0.75

(b) Standard deviation of time to reach a given percentage
of nodes.

Fig. 4. Propagation time (in seconds) for a block vs. percentage of nodes
reached, for two values of delay factor �.

of the nodes. This last observation complies well with the
nature of the controlled flooding protocol used in Bitcoin.
Only when the time comes to reach the last ten percent of
the nodes, i.e., to get to the 99% mark, does the slope of the
curve increase slightly.

Regarding standard deviation of the block propagation time,
Fig. 4(b), its growth is similar to that of the mean value, except
that values are lower, and the amount of change in relative
terms is smaller. It is worth noting that standard deviation of
about 1.2s is not too high compared to the mean values of
about four seconds, which shows that block propagation time
has a sub-exponential distribution. More importantly, it shows
that actual propagation times do not vary too much from one
block to another, regardless of the location of the peer that
mined them.

We have also measured the time it takes a block to propagate
over a given number of hops from the source; the resulting
mean value and standard deviation are shown in top and
bottom diagrams of Fig. 5, respectively. The time to propagate
for a given number of hops increases in an almost linear
fashion up to about 4 hops, stays about the same for five hops,
and drops rapidly for 6, in case of lower network delay factor,
and 6 and 7 hops, in case of higher network delay factor.
It may seem strange that some blocks actually have to pass
six or seven hops to reach all nodes when the network has the
diameter of 5. But one should keep in mind that the controlled
flooding data propagation protocol in Bitcoin proceeds as a
series of unicasts with random delays at each hop. As the
result, some nodes may get a block sooner over a roundabout
route with a higher number of hops but with lower delay. When
the network delay factor is lower, all nodes in the network are



6

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8
mean time to propagate across given number of hops

(variable delay factor)

1.5

0.75

(a) Mean time to reach a given number of hops.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8
standard deviation of time to to propagate across given number 

of hops (variable delay factor)

1.5

0.75

(b) Standard deviation of time to reach a given number of
hops.

Fig. 5. Time (in seconds) for a block to reach a given number of hops for
two values of delay factor �.

reached in six hops, while seven-hop routes appear only in
the network with higher delay factor. However, the number of
such long routes is much smaller than the number of those
with up to 5 hops, and the 7-hop route actually occurs in a
single-digit number of cases only.

It is interesting to note that aggregate mean values (not
shown for reasons of clarity) are about 5.32 and 4.01 seconds
for the higher and lower delay factor values, respectively;
both values correspond well to measured values. Those values
are only slightly lower than the greatest per-hop mean which
corresponds to four hops from the source node, for both values
of the delay factor. This is due to the distribution of node
connectivity, as the number of nodes that can be reached in
four or five hops vastly outnumbers all others. This is also
the reason for the sharp drop in standard deviation of block
propagation time beyond five hops, as observed in Fig. 5(b).

B. Extending the blockchain

In the block propagation measurements discussed above,
we didn’t distinguish between blocks that eventually become
part of the individual node blockchain and those that do not.
Namely, a new block may reach a node, but that doesn’t mean
that it will automatically be added to the blockchain as a new
main tip. Instead, the block may end up as a side tip in case
of a fork, as shown above, or it may be discarded if it’s not
confirmed. To see how fast the blocks that eventually become
the main tip of the blockchain get there, we have also kept a
log of the main tips for all nodes and observed tip transition
times. Tip transition time is measured from the moment a new
block appears in a single blockchain – which would be that of
the node that has mined the block – to the moment the new

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1704.95 1706.2 1707.45 1708.7

17208966-main 61249375-main

(a) Block 61249375 replaces block 17208966 as the main tip.
Following an identical pattern (not shown), block 17208966
replaces block 98971925 as the previous, i.e., second-highest
block in all blockchains.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

duration of regular transitions

low delay factor

high delay factor

(b) Duration of regular main tip transitions, for low (gray) and
high (black) values of delay factor �.

Fig. 6. Pertaining to regular tip transitions. All times in seconds.

block appears as the main tip in the blockchains of all nodes
in the network; it does not include the time needed to mine
the block.

Normally, a new block appears first in the miner node and
propagates through the network, replacing the former main tip.
As more nodes confirm the new block and append it to their
blockchains as the main tip, the former main tip becomes the
previous block, as shown in Fig. 6(a).

The distribution of actual time to execute the transition is
shown in Figs. 6(b), for low and high values of the delay factor
value represented with gray and black columns, respectively.
As can be seen, more than half of regular transitions last less
than six or eight seconds, for the low and high delay factor,
respectively; in fact, about 98.5% of all transitions last up
to 10 or 12 seconds, for the low and high delay factor case,
respectively. These numbers correspond well to the measured
values of block propagation times shown in Figs. 4 and 5
above.

C. Fork transitions

We have also noticed a number of tip transitions resulting
from forks, during which the network has been partitioned
into two or even more node subsets that have chosen different
blocks as their new main tip. However, such transitions last



7

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

8198.4 8200.49 8202.49 8739.24 8741.24 8743.24
59541951-main 90979739-main 77968842-main 9920562-main

(a) Fork: block 59541951 is replaced with blocks
90979739 by some nodes, and block 77968842 by others,
as the main tip of individual node blockchains. Fork is
resolved by the arrival of block 9920562 which all nodes
append as the new main tip. Vertical axis shows the number
of nodes in respective partitions.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

8198.4 8200.49 8202.49 8739.24 8741.24 8743.24

79866509-previous 59541951-previous 90979739-previous

(b) Block 79866509 is replaced by block 59541951 as
the second-highest block in all blockchains; the latter is
subsequently replaced with block 90979739. Vertical axis
shows the number of nodes in respective partitions.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

duration of fork transitions

low delay factor

high delay factor

(c) Duration of fork transitions for low (gray) and high (black)
values of delay factor �.

Fig. 7. Pertaining to fork transitions. All times in seconds.

much longer than the regular ones – about two magnitudes of
order longer.

A sample fork transition with two competing main tips is
shown in Fig. 7(a); the delay factor was � = 0.75. As can
be seen, partitioning of the network in terms of main tips is
achieved rather quickly, in about five seconds or so, which

is close to the mean time needed to reach 99% of the nodes
in Fig. 4(a). Once the steady state is reached, the partitions
remain stable for a long time, more than 500 seconds in the
example shown.

Interestingly enough, the previous node transitioning shown
in Fig. 7(b) still behaves in a way that’s very similar, or nearly
identical, to that of the regular transition case. This is to be
expected since both competing blocks refer to the former main
tip as their previous block.

As expected, competition is resolved only when another
newly mined block is received, because it’s only at that
moment that Algorithm 1 can then choose the branch with
the largest height, i.e., distance from the genesis block, as the
valid chain, and its tip as the new main tip. Alternatively, the
branch with the greatest accumulated work can be chosen [23].
In the example shown, once the new block arrives, it actually
propagates to all the nodes rather quickly; the corresponding
time of about four seconds is close to the 50% propagation
time from Fig. 4(a). Note that, due to a large number of nodes
in the network, partitions with small sizes cannot be seen on
the diagram.

However, the time to resolve a fork is much longer than the
regular transition time, as can be seen from Fig. 7(c). Roughly
a half of the forks observed in our experiments were resolved
in less than 800 seconds, but a non-negligible portion lasted
for more than 1000 seconds.

D. On conditions that lead to a fork

Forks occur when two or more blocks are propagated
through the network at about the same time. To establish the
conditions for a fork to occur, we have measured the time
difference between the competing blocks, both between their
creation time as recorded in their timestamps and their arrival
times as recorded by the receiving node.

Mean and maximum values of time difference between
block creation and block reception are shown in Fig. 8(a).
As can be seen, blocks that are created (i.e., confirmed mined
and sent out to the network) within about 6 to 8 seconds,
on the average, result in a fork. Maximum time difference
between block creation, i.e., mining, is about 12 and 14
seconds, for the low and high delay factor, respectively. Note
that the information about block creation is readily available
in our simulation model in which clocks of all the nodes were
synchronized. However, this information cannot be reliably
obtained in the real Bitcoin network due to its decentralized
structure and, possibly, unsynchronized clocks. In fact, the
Bitcoin protocol allows blocks with timestamps of up to two
hours in the future to be accepted as valid.

Of more interest, thus, is the difference in block arrival time
which is recorded at the receiving node; after all, a fork occurs
when a block is received at a node, not when it is sent out
to the network. As can be seen from Fig. 8(a), mean time
difference between the blocks is about 2.5 and 3 seconds for
the lower and higher delay factor, respectively, each of which
is less than half of the corresponding mean time difference for
creation time. More importantly, the maximum time difference
between block arrivals that result in a fork is about 7.5 and 9



8

0

5

10

15 mean

max

difference in create time

difference in arrival time

0.75         1.5
delay factor

0.75         1.5
delay factor

(a) Mean and maximum values of creation and arrival time
differences (in seconds) between competing blocks.

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200
fork duration in seconds

max partition size

min partition size

(b) Minimum and maximum partition size vs. fork dura-
tion, � = 0.75.

Fig. 8. Characteristics of forks.

seconds for the lower and higher delay factor, respectively.
Both values are smaller than the corresponding maximum
difference of block creation times.

In our experiments most forks were of size two, i.e., one
main tip and one side tip, and of length one; there were a
couple forks of size three and four, and even one fork of
size five! However, apart from the fact that multi-way forks
are indeed possible, we cannot draw any definite conclusion
due to the limited size of our sample. In particular, there is
no discernible correlation between the size of the partitions
created by the fork and the duration of the fork, as can be
seen from the diagram of the sizes of minimum and maximum
node partitions vs. fork duration shown in Fig. 8(b).

VII. CONCLUSION AND DIRECTIONS FOR FURTHER
RESEARCH

In this paper we have examined some characteristics of forks
in the Bitcoin blockchain and the mechanism of fork creation.
We have shown that regular transitions typically finish within
a short time, up to 10 or 12 seconds at most, depending on
the network delays. Fork transitions last much longer, with
some samples lasting as much as 1000 seconds or more, as
they only get resolved by the arrival of a new block. We
found no discernible correlation between the duration of a
fork transition and the number and individual sizes of network
partitions caused by the fork.

Our future work will focus on investigating the impact
of network connectivity and topology, as well as of the

geographical distribution of the nodes and their hashing power,
on block propagation and frequency and characteristics of
forks. We will also analyze some of the attacks such as double
spending and reorganization attacks and ways to prevent them.

REFERENCES

[1] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meik-
lejohn, and G. Danezis, “SoK: Consensus in the age of blockchains,”
arXiv preprint arXiv:1711.03936, 2017.

[2] S. Ben Mariem, P. Casas, and B. Donnet, “Vivisecting blockchain P2P
networks: Unveiling the Bitcoin IP network,” in ACM CoNEXT Student

Workshop, 2018.
[3] R. Bowden, H. P. Keeler, A. E. Krzesinski, and P. G. Taylor, “Block

arrivals in the Bitcoin blockchain,” arXiv preprint arXiv:1801.07447,
2018.

[4] C. Decker and R. Wattenhofer, “Information propagation in the Bit-
coin network,” in Proc. 13th IEEE Int. Conf. Peer-to-Peer Computing

(P2P’13), vol. 26, 2013.
[5] S. Delgado-Segura, S. Bakshi, C. Pérez-Solà, J. Litton, A. Pachul-

ski, A. Miller, and B. Bhattacharjee, “TxProbe: Discovering Bit-
coin’s network topology using orphan transactions,” arXiv preprint

arXiv:1812.00942, 2018.
[6] S. Delgado-Segura, C. Pérez-Solà, J. Herrera-Joancomartı́, G. Navarro-

Arribas, and J. Borrell, “Cryptocurrency networks: A new P2P
paradigm,” Mobile Information Systems, 2018.

[7] J. A. D. Donet, C. Pérez-Sola, and J. Herrera-Joancomartı́, “The Bitcoin
P2P network,” in Int. Conference on Financial Cryptography and Data

Security. Springer, 2014, pp. 87–102.
[8] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is

vulnerable,” arXiv preprint arXiv:1311.0243, 2013.
[9] J. Göbel, H. P. Keeler, A. E. Krzesinski, and P. G. Taylor, “Bitcoin

blockchain dynamics: The selfish-mine strategy in the presence of
propagation delay,” Performance Evaluation, vol. 104, pp. 23–41, 2016.

[10] S. Haber and W. S. Stornetta, “How to time-stamp a digital document,”
in Conf. Theory Appl. of Cryptography. Springer, 1990, pp. 437–455.

[11] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking, “Randomized
rumor spreading,” in 41st Annual Symposium on Foundations of Com-

puter Science, Redondo Beach, CA, 2000, pp. 565–574.
[12] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down

Approach Featuring The Internet, 6th ed. Boston, MA: Addison-Wesley
Longman, 2016.

[13] A. M. Law, Simulation Modeling and Analysis, 5th ed. McGraw-Hill,
2015.

[14] M. Lischke and B. Fabian, “Analyzing the Bitcoin network: The first
four years,” Future Internet, vol. 8, no. 1, p. 7, 2016.

[15] R. C. Merkle, “Protocols for public key cryptosystems,” in Security and

Privacy, 1980 IEEE Symposium on. IEEE, 1980, pp. 122–122.
[16] A. Miller, J. Litton, A. Pachulski, N. Gupta, D. Levin, N. Spring, and

B. Bhattacharjee, “Discovering Bitcoin’s public topology and influential
nodes,” report, 2015.

[17] J. Mišić, V. B. Mišić, X. Chang, S. G. Motlagh, and M. Z. Ali,
“Block delivery time in Bitcoin distribution network,” in IEEE Int. Conf.

Communications ICC 2019, Shanghai, China, May 2019.
[18] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[19] T. Neudecker, P. Andelfinger, and H. Hartenstein, “A simulation

model for analysis of attacks on the Bitcoin peer-to-peer network,” in
IFIP/IEEE Int. Symp. Integrated Network Management (IM), 2015, pp.
1327–1332.

[20] T. Neudecker and H. Hartenstein, “Network layer aspects of permis-
sionless blockchains,” IEEE Communications Surveys Tutorials, 2018,
10.1109/COMST.2018.2852480.

[21] N. Papadis, S. Borst, A. Walid, M. Grissa, and L. Tassiulas, “Stochastic
models and wide-area network measurements for blockchain design and
analysis,” in IEEE INFOCOM, 2018, pp. 2546–2554.

[22] G. Pappalardo, G. Caldarelli, and T. Aste, “The Bitcoin peers network,”
in 2nd Int. Workshop P2P Financial Systems, London, UK, Sep. 2016.

[23] Y. Sompolinsky and A. Zohar, “Accelerating Bitcoin’s transaction pro-
cessing. fast money grows on trees, not chains.” IACR Cryptology ePrint

Archive, vol. 2013, no. 881, 2013, https://ia.cr/2013/881.
[24] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work

vs. BFT replication,” in International Workshop on Open Problems in

Network Security. Springer, 2015, pp. 112–125.


