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ABSTRACT

In this work we consider kernel-based record lifetime estimation in a proactive Internet of Things (IoT) proxy
with multicast based cache management. Multicast refreshment requests were based on lifetime expiration for a
predefined number of records. To reduce the traffic volume in the IoT domain, we assume that only nodes where
the observed physical variable has changed its value will respond to the multicast request. For estimating the data
lifetime at the proxy, we use Gaussian kernels, assuming that the intrinsic data lifetime probability distribution was
taken from Erlang-k family of sub-exponential distributions. In this setup, we consider that the proxy connects to
the IoT domain using an IEEE 802.15.4-compatible wireless network. Results indicate that narrow and symmetrical
lifetime probability distributions require more frequent multicasting refreshments compared to wider and asymmetric
ones. This increases traffic intensity and energy consumption in IoT domain. We quantify finding with numerical
results.
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1 INTRODUCTION

The introduction of Constrained Application Protocol
(CoAP) [15] has led to the proliferation of versatile
applications over a large number of smart devices. CoAP
acts as the application layer protocol that works over the
UDP/IP protocol stack which facilitates evolution and
integration of sensor and actuator networks to bring the
Internet-of-Things (IoT) vision to life. CoAP supports
this vision through asynchronous message exchange
with optional reliability, publish-subscribe paradigm,
multicasting, and resource discovery in both IPv4 and
IPv6-based network environments. It thus allows the
ubiquitous Web paradigm in which servers provide
content to Internet clients to be replicated in an IoT
network environment comprised of smart nodes that

provide sensed data on demand to clients from the
Internet [6].

However, IoT networks and applications face a set
of challenges that differ from those encountered in
traditional web scenarios. First, IoT server nodes have
limited computational capabilities and they typically
operate on battery power; this severely constrains the
choices available to the designers of IoT networks.
Second, most IoT applications require a certain level of
freshness of sensed data in order to function correctly;
this complicates the data collection protocols. Finally,
allowing IoT server nodes to be contacted directly by
clients opens security vulnerabilities. All of those
challenges can be addressed through the use of proxies
that interconnect low power, low data rate wireless
networks of IoT devices to other, higher capacity

1

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojiot


Open Journal of Internet of Things (OJIOT), Volume X, Issue X, 20XX

wireless or even wired networks and provides the
necessary protocol translation. The clients thus see
the proxy as a traditional web server where the data is
actually created by the IoT servers behind it.

The proxy typically maintains a cache to store data
readings sent by the IoT server nodes. The use of
cache reduces latency for the clients, but also saves
communication bandwidth in the IoT domain and energy
expenditure of IoT server nodes. In the simplest case,
proxy will respond to client requests with cached data,
if it is fresh, or request data from the appropriate IoT
server node, if not. In the proactive mode, proxy will
monitor the freshness of cached data and issue requests
to refresh it when needed, without an explicit client
request. The proxy can also operate in reverse mode in
which IoT server nodes send data to the proxy when the
data becomes stale (i.e., obsolete) or when the monitored
physical variable changes. Oftentimes these operation
modes are combined in the so-called hybrid proxies.

In all cases, the notion of data freshness is crucial
for the timely operation of the proxy. To support
monitoring of data freshness, CoAP allows IoT server
nodes to annotate the data they send with a Max Age
value indicating the data lifetime. This allows
the proxy to decide whether to service a client’s
request with cached data or to request the data
from the server node. However, in many scenarios
sensed data is parameterized: for example, instead
of periodically reporting the exact data reading, the
server node can report whether the value has crossed
some threshold. This approach reduces the number of
messages exchanged between the IoT server and the
proxy, and further reduces communication bandwidth
and energy.

In both periodic and parameterized reporting, the
proxy can use the data lifetime value to refresh its cache.
However, parameterization turns the data lifetime into
a random variable and effectively precludes the server
node from providing information about data lifetime.
The latter case requires estimation of the probability
distribution of the data lifetime. Estimation has to be
done at the proxy since server nodes typically do not
possess the required computational resources [19]. The
use of multicasting [12] enables the proxy to wait until
an entire group of data records become stale and refresh
them using a single multicast GET request, which was
found to be most efficient in terms of communications
bandwidth and latency [7].

The focus of the present work is lightweight data
collection and cache refreshment by a CoAP proxy
operating in reverse mode, with the objective of reducing
the volume of wireless traffic on the IoT side. It builds
upon our previous work [8] but extends it significantly in
several directions, as follows.

• We assume that data lifetime follows a
subexponential probability distribution from
Erlang-k family which is more realistic than the
exponential distribution used in the earlier work.

• We deploy data lifetime estimation at the proxy and
use it to estimate when data record might become
stale i.e. when it exceeds threshold value.

• The proxy performs data lifetime estimation using
kernel smoothing [17] which is a computationally
efficient technique to find structure in data sets
without a predefined parametric model.

• Data coming from IoT nodes present a group-
based observation stream combining the concepts
of multicasting [12] and observations [3]. Namely,
multicast requests are sent when a number of
cached data values exceed their estimated lifetime
threshold, and IoT server nodes reply to multicast
requests after a random leisure period. As the
result, this approach provides adhoc and implicit
multicast subgroups within the IoT domain, since
only a limited number of nodes will send their reply
to a multicast request.

This scheme distributes node replies over time and
alleviates potential congestion in the domain. To
the best of our knowledge this scenario has not been
considered in the earlier work. We model and analyze
the IoT domain performance under variable distributions
of lifetime, size of stale record group, and number of
nodes in the domain.

The paper is organized as follows. Section 2 gives
basic notions about CoAP and multicasting, while
Section 3 describes in detail the operation of the
multicasting proxy at the IoT gateway. In Section 4
we present kernel based technique for data lifetime
estimation and use it to estimate data lifetime and
analyze the stale time of a record in Section 5, followed
by the estimation of the period between multicasting
requests in Section 6. Section 7 presents the results of
performance evaluation within the IoT domain, preceded
by a short discussion of communications in IoT domain.
Finally, Section 8 concludes the paper.

2 COAP AND MULTICAST COAP

Constrained Application Protocol (CoAP) is a
lightweight replacement for HTTP that follows the
Representational State Transfer (REST) paradigm
[2] and implements a subset of HTTP methods,
namely GET, PUT, POST and DELETE. CoAP is
specifically tailored to support machine to machine
communications (M2M) in IoT networks by providing
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resource discovery, asynchronous communications,
multicasting and observation streams of data [15].
Unlike HTTP which operates using TCP as its transport
protocol, CoAP uses UDP for efficiency reasons:
UDP provides basic functions such as protocol port
multiplexing and error checking, contrary to TCP which
has built-in reliability, congestion control and flow
control. Congestion and flow control are not (yet) the
paramount issues in IoT due to comparatively small
traffic volume, but reliability is a crucial property
that could not be left to the applications – it had to
be provided within CoAP itself. Therefore CoAP
architecture may be considered to have two layers: the
upper layer deals with requests and responses through
a number of methods, while the lower one implements
reliable message transfer over UDP.

To this end, the messaging layer labels each
message as confirmable (CON) or non-confirmable
(NON). CON messages must be acknowledged with
an acknowledgement message (ACK). Unrecognized
CON messages will provoke the recipient to send a
reset message (RST). Reliability is achieved using a
simple stop-and-wait protocol with exponential backoff
mechanism that will repeat the message in case an ACK
message is not received within the predefined timeout.
CON message and its ACK are related through the
message ID which is part of the regular message header.

The upper, method layer uses services of the
messaging layer to transmit CoAP methods and
responses. In the simplest case, request will be sent
as a CON message and response will be piggybacked
onto the ACK message. However, it is possible that the
IoT server node cannot provide the response as part of
the acknowledgement. In such cases, response will be
sent later in a separate CON message which needs to be
acknowledged by the recipient (client or proxy). As the
message ID of the response message is different from
that of the CON request, the asynchronous request and
response are linked through the value of a token that was
provided in the header of the initial request message. A
token is valid until the response is received, or its lifetime
(the default value of which is 250 seconds) expires.

Requests and responses can also be sent as non-
confirmable messages, again linked by the same token
value. This approach makes perfect sense if there are few
hops between the message source and recipient, and the
underlying data link layer supports reliable messaging.
For example, in IEEE 802.15.4 and IEEE 802.11ah
standards, in acknowledgement mode, a packet can be
re-transmitted several times before failure is declared [9].

2.1 On proxy operation and multicasting

CoAP encourages proxying with caching since this
reduces network traffic, facilitates access to devices in
power saving mode (sleep) and provides resource hiding
towards the rest of Internet which improves security.
Moreover, it is simpler and more secure if the IoT node
performs (mutual) authentication with the proxy than
with an arbitrary client.

To reduce bandwidth usage and energy consumption
of IoT server nodes which are, more often than not,
battery operated, CoAP provides two special features.
One of these is the observation mode [3] which is
essentially a publish-subscribe relationship in which
the proxy subscribes to notifications from a single IoT
server node using a GET method with the appropriate
option (-observe). The server’s positive response
indicates a promise to send notifications whenever the
value of the observed physical variable changes. The
proxy may request the data repeatedly; the server can
send the data more often or even periodically. Either
side may terminate the relationship, but the proxy must
occasionally confirm its continuing interest in receiving
the notifications. Note that this feature enables the
reverse-mode operation of the proxy described above.

The other special feature is multicasting [12, 15]
which may be considered as a CoAP extension that aims
to improve scalability and efficiency. Multicast can be
run in link-local mode over the IoT domain reachable
over single hop, or over multiple hops beyond link-
local scope provided forwarding nodes are capable of
multicast routing.

Multicast request is sent as a multicast GET (mGET)
method addressed to the IP multicast address and it is
carried in a non-confirmable message. Servers reply in
non-confirmable unicast with data, in which case the
response token must match the request token. If the
requested resource is not found, the server may reply
accordingly or simply withhold the response [12].

Application based multicast groups can be pre-
configured or created and deleted dynamically. Dynamic
creation of groups can be done by special configuration
node (e.g proxy). Information about group membership
in link-local environment can be created/updated/deleted
by special node (proxy) and communicated to the
node(s) using PUT method. Addition of new multicast
group for the node(s) can be done using POST method.
Differentiation among multicast groups can be done
by different IPv4/IPv6 multicast addresses or by UDP
protocol ports different from the default one (5683).

Forming multicast groups is crucial for further
multicast operation. Membership of multicast groups is
created according to the application needs, to perform
resource discovery, or to access physical variables sensed
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in locations defined with Universal Resource Identifier
(URI). Clients can have a pre-configured list of groups
or they can learn about multicast groups using service
discovery, either using the default multicast group ‘All
CoAP nodes’ [1] or via DNS-based service discovery
at default UDP protocol port 5863 [11, 12, 13, 14].
Servers that have joined the multicast group then respond
with links that correspond to entry points to resource
interfaces they host. Resource discovery needs to be
repeated periodically because nodes may join or leave
the multicast group. Core link format described in
[11, 14] also supports query filtering but we do not model
this feature in the present work.

Token management is an important issue when
multicasting is used. Namely, in unicast mode, reception
of reply from IoT node frees the token value, but in
multicast it can be released when ‘most’ of the replies
have been received. Also, the token lifetime limits the
number of tokens that can be kept ‘alive’ at any given
time.

3 MULTICASTING PROXY WITH DATA
LIFETIME ESTIMATION

We assume that nodes in the IoT domain estimate
homogeneous variables and that the proxy has an
estimate of data freshness, initially obtained when the
nodes (some of them, at least) begin by using POST
method to update the corresponding records in the cache.
In case IoT nodes report readings of heterogeneous
variables or several distinct physical variables (e.g.,
temperature and humidity), the model has to be extended
with multiple traffic classes, but the operation of the
model would remain the same for each traffic class.

3.1 Proxy operation

Operation of a multicasting proxy with estimation of data
lifetime is schematically shown in Fig. 1 for the IoT
network with five nodes. Circles with inscribed numbers
correspond to important events, as described below.

The proxy periodically checks the freshness of cache
data against the current freshness estimate. Event 1
corresponds to the moment When the number of stale
records, i.e., those for which the lifetime has exceeded
the current estimate, reaches a predefined threshold θ
(equal to 2 in the example shown in the figure). Then,
the proxy issues a multicast GET request (mGET) to the
local IoT domain to refresh the data (event 2) which all
nodes receive.

However, nodes do not respond to it immediately.
Instead, each node waits for a randomly chosen leisure
time period L [15] and then checks the physical variable
of interest. If its value has changed from the last reading,

the node responds to the mGET request with a ‘2.05
content’ message containing newly read data (event 3).
Upon receiving this value, the proxy updates the cached
record and resets the freshness timer (event 4). The
cached data is immediately available to respond to client
requests.

The leisure time spreads node responses over time
within a predefined leisure time window (to be explained
in detail below) which reduces the contention and
the resulting transmission failures in the wireless IoT
domain [15]. The original documentation actually asks
for data reading to be performed prior to starting the
leisure interval timer countdown. However, switching
the order of those actions ensures that the data
transmitted is more fresh, as it may change its value
during the leisure countdown. Furthermore, the wait-
then-sense ordering does not affect the latency of data
received at the proxy as it receives the data only after the
leisure period in both scenarios.

It is also possible that the value of the physical variable
has not changed since the last reading (event 5). In this
case, the IoT server simply ignores the mGET request
and remains silent. This reduces the volume of traffic
in the wireless domain and energy expenditure of server
nodes.

This procedure is repeated every time the proxy notes
that the number of stale records reaches the threshold θ,
as shown in the second and third mGET cycle in Fig. 1.
Each multicast request actually presents a different
token value to with the objective of synchronizing and
refreshing data values at the cache.

Sometimes a node will record and subsequently
transmit a new data value even if the freshness period
of the cached data value has not exceeded the lifetime
estimate (event 6). In this case, the proxy simply
overwrites the cached data value and resets it lifetime
estimate.

In all cases, nodes that reply to a mGET request label
their responses using the token of the most recent mGET
request. As the result, node reports can be grouped
by node IP address and, within the group, by tokens.
Token value can be numbered sequentially or as a
function of time to further simplify data processing. This
approach introduces virtual partitioning of the multicast
group with evenly distributed replies, compared to the
traditional approach in which every node in the domain
had to reply to a mGET request [8].

3.2 Further observations

It is worth noting that the technique described above
is somewhat similar to observation mode but with an
important difference. Regular observation mode is
a relationship between the proxy and a single IoT
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Figure 1: Pertaining to the operation of multicast proxy.

server node; in our approach, the entire multicast group
effectively participates in the observation. Compared to
regular CoAP multicast, this scheme actually reduces the
volume of traffic in the IoT domain since only nodes
which obtain new data values between two consecutive
mGET requests with tokens tn and tn+1 will reply to the
mGET request with token tn. This may be considered
as a form of reply suppression which was recommended
in [12] but without directions how to implement it in
practice. The reply would be sent in a non-confirmable
message with reply code ‘2.05 content’ and the new data
value; any other outcome will be suppressed by IoT
server.

3.3 Protocol design

Regarding protocol design of the proxy, we assume
that the protocol stack consists of application, transport
and network and data link layers, with the last one
implemented on the networking adapter. Similar layered
architectures were proposed in [6, 18]. Fig. 2 shows the
stage that corresponds to proactive cache operation.

Network and protocol layers are each served with
one upwards and one downwards thread. Application
layer has multiple concurrent threads for record reading
and one for record updating. Although time intervals
between mGET requests do not follow exponential
distribution, due to the low request rate and combination
with replies to POST methods we can approximate
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downlink traffic as Poisson. Traffic in the uplink
direction can also be approximated as Poisson due to
the presence of leisure time in replies and existence of
messages with POST methods. Queuing analysis of
these three layers is presented in detail in [8] and it will
not be repeated here.

4 KERNEL BASED ESTIMATION OF RANDOM
VARIABLES

The proxy performs record lifetime estimation using
kernel based technique [17]. To achieve reliable
estimation of probability distribution function (pdf) of
record lifetime, the proxy needs to collect a large number
(of the order of several hundreds) of inter-POST periods
and find optimal bandwidth for estimation. In this
work we assume that record lifetime is subexponential,
more precisely we assume that it follows family of
Erlang-k probability distributions [5]. We consider
this approach to be more realistic compared to the
exponential distribution which we used in our previous
work [8, 10]. So far many kernel functions can be used
such as Epanechnikov, Biweight, Triweight, Gaussian,
triangular and uniform [17]. In this work we use
Gaussian kernel G(t) = 1√

2π
e−

t2

2 due to ease of
analytical manipulations.

Gaussian kernel has the variance and integral of its
square value, respectively, given by

µ2(G) =

∫ ∞
−∞
t2G(t)dt = 1 (1)

R(G) =

∫ ∞
−∞

G(t)2dt =
1

2
√
π

(2)

Expression (1) has the variance and standard deviation
of one and in practical cases it has to be scaled
around measurement points according to the inter-point
distance. Therefore we need to work with the gaussian

kernel which has variance equal to b2 as:

Gb(t) =
1

b
√

2π
e−

t2

2b2 =
1

b
G

(
t

b

)
(3)

with µ2(Gb) = b2 and R(Gb) = 1
2b
√
π

The standard
deviation value b is also known as the estimation
bandwidth and it is very important for the quality of
estimation. With the known bandwidth and in the
presence of n measurements, probability distribution of
random variable under observation can be obtained as
the sum of kernels positioned around the measurement
data. For example, if we are estimating probability
distribution of data lifetime at the proxy and we have
collected n measurements of data lifetime denoted as
Tl,i, i = 1 . . . n, its pdf can be estimated by

T̂l(t) =
1

n

n∑
i=1

Gb(t− Tl,i)

=
1

nb
√

2π

n∑
i=1

e−
(t−Tl,i)

2

2b2 (4)

Quality of estimation is evaluated in two steps.
First the mean squared error (MSE) related to single
measurement point is calculated:

MSE(T̂l) = E(T̂l(t)− Tl(t))2

= (ET̂l(t)− Tl(t))2 + E(T̂l(t)− ET̂l(t))2

= Bias(T̂l(t))
2 + V ar(T̂l(t)) (5)

After that mean integrated squared error (MISE) is
computed based on whole measurement space:

MISE( ˆTl(t)) =

∫ ∞
−∞

MSE(T̂l(t))dt (6)

=

∫ ∞
−∞
Bias(T̂l(t))

2dt+

∫ ∞
−∞
V ar(T̂l(t))dt

However, finding appropriate bandwidth requires
further calculations. Optimal bandwidth is determined
by minimizing mean integrated squared error (MISE).
In order to find minimum in a computationally feasible
way, expression (6) for MISE has to be simplified by
performing a Taylor series expansion from which only
the most important members are retained:

MISE( ˆTl(t)) ≈
1

4
b4µ2(G)2R(Tl(t)

′′) +
R(G)

bn
(7)

which renders itself to derivation of bandwidth that gives
the minimal MISE as

bopt =

(
R(G)

nµ2(G)2R(T ′′l )2

)1/5

(8)
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In case of Gaussian kernels previous expression
becomes:

bopt,g =

(
1

2
√
πnR(T ′′l )2

)1/5

(9)

Optimal bandwidth for data that is distributed close to
the normal distribution is obtained by further substituting
R(T ′′l ) for normal distribution:

bns,g = σ̂

(
8
√
πR(G)

3µ2(G)2n

)1/5

= σ̂

(
4

3n

)1/5

(10)

where for large number of data points σ̂ denotes
standard deviation. If the data sample is not large
then smaller between standard deviation of data sample
s2 = 1

n−1
∑n
i=1(Tl,i − Tl) and scaled interquartile

range R. Interquartile range contains 50% of data
samples. If interquartile range is used instead of standard
deviation then data outliers can not significantly affect
the optimal estimation bandwidth. Therefore we used
σ̂ = min(R/1.34, s).

For example for Erlang-k distribution using Gaussian
kernels optimal bandwidth can also be calculated by
computing R(f ′′) and plugging it in (9).

However, if the original probability distribution is not
known, value R(T ′′l )2 in (8) is not known either and
further estimation is needed. First step in this estimation
is

T̂l
′′
(t) =

1

b3n

n∑
i=1

G′′
(
t− Tl,i
b

)
(11)

Then we apply biased cross validation (BCV) to find
R(T̂l

′′
) [17], based on computing convolution between

the two kernels, as

R(T̃l
′′
(∆)) =

1

n2

n∑
i=1

n∑
j=1

∫ ∞
w=−∞

G′′b (∆i,j − w)G′′b (w)dw

=
1

n2

n∑
i=1

n∑
j=1,j 6=i

(G′′b ∗G′′b )(∆i,j) (12)

Calculating the minimal value of MISE requires iterative
computation of expression (12) for a range of bandwidth
values (starting with well known oversmoothed
bandwidth [17]) and computation of MISE as

MISEBCV (b) =
1

4
b4µ2(G)2R(T̃l

′′
) +

R(G)

bn
(13)

and the bandwidth which results in smallest MISE is
selected for estimation as bBCV .

Table 1: Approximations of optimal bandwidth.

distribution bns,g berlangK,g bBCV
Erlang-2 0.193 0.107 0.134
Erlang-3 0.172 0.104 0.124
Erlang-4 0.15 0.112 0.119
Erlang-5 0.132 0.109 0.119

5 ESTIMATION OF RECORD LIFETIME

In our experiments we have considered Erlang-k, k =
2 . . 5, distributions of data lifetime with mean value of
Tl = 1 minute (60s). Data samples of lifetime were
obtained using Maple’s Statistics package. Estimation
was done on a sample of 500 measurements.

Fig. 3 shows the estimation of pdf for the data lifetime
where red circles present mathematical expression, and
black line shows estimation with optimal bandwidth
derived from BCV algorithm. Brown dashed line
presents estimation using bandwidth bns,g , appropriate
for normal distribution [17]. We notice that optimal
bandwidth provides best estimation but estimation with
bns,g (when k > 2) provides estimation close to optimal
and leads to lightweight lifetime distribution estimation.
Table 1 presents values of bandwidth corresponding to
normal and Erlang-k distributions respectively as well
as optimal bandwidth calculated using BCV approach.
The reason why the values become closer as the degree
of distribution increases lies in the fact that Erlang-k
distributions with increasing value of k have smaller
coefficients of skewness and kurtosis which means that
they are reasonably symmetrical around the mean and
have fast decaying tails. From this estimation we can
compute higher moments of data lifetime and use them
to determine the threshold Thr after which the record
is considered as outdated. Mean value and standard
deviation can be found as

Tl =

∫ ∞
0

tT̂l(t)dt =

∫ ∞
0

1

n

n∑
i=1

tGb(t− Tl,i)

σ(Tl) =

(∫ ∞
0

1

n

n∑
i=1

(t− Tl)2Gb(t− Tl,i)

)1/2

As explained in Section 3 above, we consider the
refreshment policy where the proxy checks for θ
outdated records and then sends a multicast GET request.
Fig. 4 shows the details of data lifetime expiration
between two subsequent mGET requests for a cache with
a limit of θ = 2 records that can become stale before
issuing the next mGET request. From Fig. 4 we can
make the following observations:
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• Moment of generation of data Ri+1 is a random
point in lifetime of data Ri. Distance between two
successive data generation pointsRi andRi+1 from
the point of view of renewal theory [4] is known as
elapsed data lifetime with probability distribution
Tl,−(y).

• Given that the threshold value is changing slowly,
i.e., it is constant over a period of time which
is large compared to the threshold itself, the
distances between two consecutive moments when
value of freshness threshold is exceeded have same
probability distribution of elapsed data lifetime
Tl,−(y).

The value of data freshness threshold should be
chosen to satisfy two goals. First, it should be large
enough to prevent too frequent refresh requests. Second,
it should be low enough so that the group refresh policy
described below triggers a refresh request while most of
the data records are still sufficiently fresh so that client
data requests are still served with valid data. In our
work, we calculate the threshold value using the mean
and standard deviation of estimated data lifetime as

Thr = mTl + lσ(Tl) (14)

where 0 < m ≤ 1 and 0 < l ≤ 3.
Probability density function (pdf) of elapsed data

lifetime [16] can be computed as

Tl,−(y) =
1

Tl

∫ ∞
t=y

T̂l(t)dt (15)

with mean value and standard deviation obtained as

Tl,− =

∫ ∞
y=0

yTl,−(y)dy (16)

and

σ(Tl,−) =

∫ ∞
y=0

(y − Tl,−)2Tl,−(y)dy, (17)
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respectively. The total (threshold based) stale time for θ
records is the sum of θ − 1 elapsed lifetimes, with mean
value of (θ − 1)Tl,−.

We also need to include the impact of the leisure
period. As discussed in Section 3, each node will start
a leisure period countdown after the mGET request; if
fresh data is present at the time the countdown ends,
it will be transmitted to the proxy. We assumed that
the window for leisure period takes a fixed portion
WL = (θ − 2)Tl,− of the period between multicast
requests, so that the ratio WL/TMGET = (θ − 2)/θ.
The reply window period WL is divided in slots of
duration tboff which match the backoff period of the
underlying medium access control (MAC) protocol (see
next Section), so the number of slots is ns = WL

tboff
. Each

node selects its slot – effectively, the leisure time period
L – following a uniform distribution with probability
generation function (PGF) of

N(z) =

ns−1∑
i=0

1

ns
(z)i (18)

and mean leisure time becomes L = tboffN .
Since leisure time is much longer than the backoff at

the MAC layer, the probability that i-th record in group
of θ records is stale can be obtained as

Pst(i) =

∫ Thr+(i−1)Tl,−+L

t=0

T̂l(t)dt (19)

and find mean probability that any record is stale, i.e.,
that it exceeds the threshold value, as

Past =
1

θ

θ∑
i=1

Pst(i). (20)

Fig. 5 shows mean value of the total estimated
stale time, expressed in minutes, and its coefficient of
variation and probability that any record is stale when
Thr = Tl. Parameter of Erlangian distribution for
lifetime was varied between 1 and 6, and record group
size was varied from 2 to 10. We notice that mean record
stale time increases with the record group size which is
expected. However it decreases with the parameter of
Erlangian distribution since the elapsed record lifetime
decreases with the distribution parameter. Coefficient
of variation of total stale time decreases both with the
increase of record group size and parameter of Erlangian
distribution of lifetime. Finally, the probability that any
record is stale (according to the threshold) shows a mild
decrease when Erlangian parameter is increasing but a
rapid increase with increase of group size.

6 ESTIMATION OF RATE OF MULTICAST
GET REQUESTS

Let us now we look into the situation when groups of
θ records become stale in sequence, and thus result in
a sequence of mGET requests. Clearly the time period
between two consecutive mGET requests is the sum of
θ elapsed data lifetimes. Probability distribution of this
time can be found as a θ-fold convolution of elapsed data
lifetime. Since data records are homogeneous, elapsed
data lifetimes are i.i.d. variables, and mean and variance
of the sum is equal to the sum of means and variances
respectively. Therefore mean period between multicast
get requests and rate of requests are

TMGET = θTl,−

λmGET =
1

TMGET
(21)

Although all nodes in the IoT domain served by
the proxy belong to the same multicast group, only
nodes where the physical variable has changed the value
between the previous and current multicast will send
replies. Given the randomness of data lifetime and
imperfection of estimation, it is possible that more
than θ nodes will reply but that number will still be
considerably smaller than the number of nodes in the IoT
domain.

Possible transmission collisions from IoT nodes
(besides the addition of a random leisure period
before each transmission) are further resolved using the
contention resolution mechanism(s) of the underlying
MAC protocol. This approach ensures that all responses
arrive at the proxy within a time period equal to the
sum of leisure period and maximum backoff period
of the MAC algorithm. Therefore, under unsaturated
MAC operation, it is almost impossible for a reply to a
multicast request with token tn to be delayed for so long
that it eventually arrives during the reply period of next
request with tn+1. This means that the token tn can be
safely released when a new request is issued.

We will now show how to approach modeling of
uplink and downlink packet rates, assuming there are
nd nodes in the IoT domain. We note that estimation
of data lifetime distribution at the proxy requires POST
methods from small number, e.g., 10% of nodes. Reply
to the POST method is CoAP reply ‘2.01 created’. The
downlink rate from proxy application layer, through
protocol and network layer, to wireless medium is only

λdsp = λMGET + 0.1ndλl (22)

where λl = 1
Tl

is mean data update rate. In the
uplink direction, there are estimation POST messages
and replies to multicast request which is non-confirmable

9
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Figure 5: Descriptors of total record stale time.

as are the replies. (Lack of reliability is not a big
problem since the MAC layer supports it through re-
transmissions.) Their total rate is

λusp = nλMGET + 0.1ndλl. (23)

These values can be used to find upstream and
downstream delays, respectively, in IoT proxy stages.

The downlink rate towards the IoT node contains only
multicast GET methods and replies to POST methods,
while the outgoing rate from the IoT node is comprised
of replies to mGET requests and estimation POST
methods. Then the rate from IoT node towards the proxy
is

λtot = λMGET + 0.1λl. (24)

7 PERFORMANCE EVALUATION

7.1 Model of communications

We consider a single-hop 6LoWPAN over IEEE
802.15.4 cluster with acknowledged transfer. The
cluster operates in the ISM band at 2.4GHz with
raw data rate 250kbps, set up so that period between
the beacons is BI = 0.98s. Thus, IoT nodes can
wake up every 0.98s to hear the information from
the beacon which contains list of nodes with pending
downlink traffic. Backoff parameters such as the
minimum backoff exponent, the maximum value of
the backoff exponent and the maximum number of
backoff attempts are set to their default values of
macMinBE=3, aMaxBE=5 and macMaxCSMABackoffs
= 4, respectively, as specified in [9]. Thus we can
assume that in the network with a reasonably low bit
error rate of BER = 10−5 and nodes that send a single
CoAP message every 1min (60 seconds) on the average,
four retransmission attempts should provide sufficient
reliability to compensate for the lack of CoAP reliability

due to nonconfirmable messages. Packet size is 127
bytes, including 6LoWPAN, UDP and CoAP headers.

The operation of the MAC layer in this setting can
be evaluated using an analytical model, but we do not
present it here as its detailed derivation is available in [9]
and its application to multicasting proxy is presented in
[8].

7.2 Performance results

We have evaluated the performance of multicasting
proxy with three distributions of data lifetime, namely
with Erlang-2, -3, and -4 distributions with the same
mean value of Tl = 60s. Proxy used proactive refreshing
of data with multicasting requests. The number of stages
at proxy was three [6], and mean stage execution time
was set to 1

µ = 5ms.
IoT proxy sends a mGET request when θ = 2 . . 10)

data records become stale. Threshold for data freshness
is set to Thr = Tl = 60s. The number of IoT devices was
varied between 100 to 200. We assumed bit error rate of
10−5 and 6LoWPAN packet size of 127 bytes. We did
not use any explicit leisure time since its role has been
fulfilled by the elapsed data lifetime.

We present round trip time, probability of successful
transmission and daily energy consumption per sensor
for three probability distributions of data lifetime namely
Erlang-2, -3, and -4. Results are shown in Figs. 6,
7 and 8, respectively. We observe that the round trip
time with included leisure period decreases when the
parameter of Erlangian distribution increases. This
is a consequence of decreased period between mGET
requests due to the decrease of elapsed lifetime value.
Related result is increase of daily energy consumption
per device when the parameter of Erlangian distribution
is increasing since mGET request rate is increasing.
Energy expenditure decreases with the increase of the
number of IoT devices since one downlink mGET

10
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Figure 6: Proxy performance with Erlang-2 distributed data lifetime for uniformly generated leisure time
within the leisure period.
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Figure 7: Proxy performance with Erlang-3 distributed data lifetime for uniformly generated leisure time
within the leisure period.
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Figure 8: Proxy performance with Erlang-4 distributed data lifetime for uniformly generated leisure time
within the leisure period.

transmission serves increasing number of sensors.
Probability of successful transmission slightly

decreases when the parameter of Erlangian distribution
is increasing due to the increase in multicast request
rate. Due to low traffic in the IoT domain, the diagrams
presented do not show significant dependence on the
number of IoT devices which also means that this
technique can be applied to domains with 300-400 IoT
devices without severe performance deterioration.

These results show that the probability distribution
of data lifetime has a significant impact on the proxy
management scheme. Data lifetime distributions with
small values of standard deviation and skewness require
more frequent cache updates for the same record group
size. This increases energy consumption in IoT domain.
If we combine these results with results from Fig. 5,
we see that the record size for multicast refreshment
should be determined from the limit on total estimated
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stale time of data records for known data lifetime
distribution. Alternatively, instead of record size, the
value of freshness threshold can be manipulated. If there
is additional restriction on energy consumption per IoT
node then limit on the number of IoT devices should be
imposed.

8 CONCLUSION

In this paper we have developed the model of
multicasting based proactive proxy which estimates data
lifetime and uses that information to determine moments
to refresh the cache. Cache refreshment decision is based
on a number of stale data records. Results show that a
comparatively small number of lifetime measurements,
say, 500 or so, are sufficient for reliable estimation. Also,
the bandwidth appropriate for the estimation of normal
distribution resulted in estimates that were close to the
optimal result from biased cross validation approach. In
our model we have considered IoT domain consisting
of a single hop 6LoWPAN/IEEE 802.15.4 cluster. Our
findings show that if the standard deviation and skewness
of the data lifetime distribution decrease for the same
mean value of the variable and same record size, the
period of multicast requests decreases. This leads to
increased traffic load and, perhaps more importantly, to
increased energy consumption in the IoT domain. This
situation can be remedied by decreasing the number of
sensors in the domain or by increasing the data freshness
threshold.
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[8] J. Mišić and V. Mišić, “Proxy cache maintenance
using multicasting in CoAP IoT domains,” IEEE
Internet of Things Journal, 2018.
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