
Modeling of Bitcoin’s blockchain delivery network
Jelena Mišić1, Vojislav B. Mišić1, Xiaolin Chang2, Saeideh G. Motlagh1, and M. Zulfiker Ali1

1Ryerson University, Toronto, ON, Canada
2Beijing Key Laboratory of Security and Privacy in Intelligent Transportation

Beijing Jiaotong University, Beijing, China

Abstract—In this work we provide a comprehensive analytical
model for Bitcoin’s blockchain distribution network. Components
of the model are derived from recent measurements and business
analysis reports. We model the data distribution algorithm using
branching processes in the network with random distribution
of node connectivity. Then we apply Jackson network model to
the entire network in which individual nodes operate as priority
M/G/1 queuing systems. Data arrival to the nodes is modeled
as a non-homogeneous Poisson process where the distribution of
arrival rate to the nodes is derived from the analytical model of
data delivery protocol. Within performance results we present
probability distributions of block and transaction distribution
time, node response time, forking probabilities, network partition
sizes and duration of ledger’s inconsistency period.

Index Terms—Bitcoin, blockchain P2P network, performance
analysis

I. INTRODUCTION

Bitcoin, hereafter referred to as BTC, is a decentralized
cryptocurrency system running on a number of processing
nodes interconnected through a P2P network [22]. It is based
on blockchain technology which implements a distributed or,
rather, replicated ledger holding financial transactions [3],
[4], [20], [29] packaged into blocks. Transactions document
transfer of funds from payer(s) to payee(s) and have to be
verified to make sure the value of all claimed inputs is equal
to or larger than the sum of new outputs [25]. Transactions
are grouped into blocks that are ‘sealed’ by a nonce in the
block header which guarantees that the block hash contains the
required number of leading zeros. This step requires non-trivial
computing effort known as proof of work, or PoW. Each block
also contains the hash of the previous block, thus creating a
single linked list of blocks held at each processing node.

Newly created or ‘mined’ block is distributed to the network
for further verification; block miners are rewarded in order to
incentivize the mining efforts. Upon receiving a new block,
nodes which were in process of verifying the same (or nearly
the same) set of transactions will abandon their efforts, verify
the newly arrived block and insert it into their ledgers, and
continue transaction verification from the pool of unverified
transactions. To regulate the rate of block mining, the Bitcoin
protocol periodically adjusts the difficulty of computing the
nonce in the block header so that new blocks are mined once
every 10 minutes on the average [22].

Long delays in forwarding blocks or transactions lead to
security vulnerabilities [5], [11], [12], [17], [23], [24], [27]
which affect ledger consistency. One of the important vulner-
abilities is forking which occurs when some nodes append

one block to their ledger while the others append another one,
leaving the distributed ledger in an inconsistent state. Forking
can be exploited for an attack if the attacker can generate
blocks at a sufficiently high rate and, thus, build its own
blockchain extension which will take over blockchain head.
This situation can be mitigated with fast data propagation in
the network.

In this work we develop a detailed analytical model of the
Bitcoin P2P network based on analysis of Bitcoin’s business
structure over the P2P network [20], [29] and recent measure-
ment reports regarding connectivity, round trip time (RTT),
block size and distribution of block mining power in the
network [1], [6], [8], [21], [28]. Analytical modeling of the
BTC network faces many challenges. For example, variability
of the number of connections among the nodes affects data
distribution algorithm and introduces variability of data rates
coming to nodes. This introduces non-homogenous Poisson
process of data arrivals at network nodes which, in turn, affects
further queuing analysis of node which needs to be done in
the M/G/1 manner due to unknown properties of service time
[30]. Another problem is that block and transaction traffic need
to be separated in different queues and handled in priority
order. Solving all these issues allows analysis of the blockchain
network using the Jackson network approach [19].

Our model includes node connectivity, RTT probability
distribution, block size, the impact of non-uniform distribution
block miners, data distribution (gossip) algorithm, queuing
model at individual nodes and overall network queuing model.
The model is then used to find probability distributions of the
number of delivery hops, population of nodes receiving data
in each hop, and block and transaction delivery times in the
blockchain network. Furthermore, we derive phases of forking
probability, sizes of network partitions upon a forking event,
and duration of the ledger inconsistency period, all of which
can help analyze consensus protocols.

The rest of the paper is organized as follows: Section II
discusses related work while Section III presents analytical
models of connectivity, RTT and block size based on measure-
ments reported in literature. In Section IV, we develop a model
of data distribution protocol. Model of incoming data arrival
process is given in Section V. In Section VI, we present a
queuing model of the distribution network and derive the total
distribution time for blocks and transactions in the network.
Derivation of forking probability and duration of inconsistency
period is presented in Section VII followed by performance
evaluation in Section VIII. Finally, Section IX concludes the
paper.



2

II. RELATED WORK

Related work can be grouped into papers that report mea-
surements in the BTC network, papers which report business
statistics of BTC, and papers which deal with data distribution
algorithms in BTC.

a) Measurement reports on BTC network: A number
of reports related to measurements of various aspects of the
Bitcoin network have appeared in past several years. Combi-
nations of data regarding the BTC network size, geographical
distribution of nodes, number of connections per node, and
block and transaction statistics were reported in [1], [6], [8],
[21], [28]. Measurements of round trip times (RTT), coupled
with node distribution in BTC network with vantage point in
Vienna, Austria, were reported in [1]; similar measurements
from a purpose-built network were presented in [10]. It is
worth noting that all reported works used measurement tools
which had interfered to some extent with genuine activities in
the BTC network.

b) Impact of business profile on BTC network: Another
group of works revealed business profile of BTC network [20],
[29] which we believe to be the primary driver for the BTC
network architecture. They showed that Bitcoin is used by
heterogenous businesses that differ by the frequency and value
of financial transactions. According to the number of transac-
tions, businesses may be categorized into gambling, mining,
exchanges, wallets, programming&hardware services, media
news, online vendors, over-the-counter trades, donations, Bit-
coin services etc. According to the value of transactions, we
can distinguish between exchanges, vendors, wallets, mining,
and gambling [20]. Geographical distribution of businesses
evolved over the past several years. For example in 2015
majority of transactions originated from US with emphasis
on gambling business and followed by Western European
countries with emphasis on mining. Recently, the number of
BTC nodes in Western Europe has exceeded the number of
nodes in US but the intensity of block mining has increased
in China where around 70% of all blocks were mined [1],
[10].

c) Data distribution algorithms: One of the first and
most influential works in measuring performance of data
distribution algorithms for BTC network was reported in [5].
Results suggest that block distribution time is exponentially
distributed and that forking probability was about 1.8% under
100kbps of TCP connection throughput but with unclear values
of node connectivity, RTT distribution, and network size.

Subsequent literature about data distribution paradigm does
not provide a completely consistent picture. For example, [27]
considers broadcast/flooding only, [5], [7] use a gossip (i.e.,
controlled flooding) based algorithm, and [24] considers both
kinds of data distribution protocols. However, pure broadcast
protocol tends to be non-scalable to large networks under ever
increasing transaction traffic. Our data distribution algorithm
resembles randomized rumor spreading [18], but that work
assumed full connectivity and random choice of peers for each
transmission by the source. In this work, the source node has
peers which are chosen randomly before the TCP connections
used for subsequent data distribution were established.

Regarding block arrival process, it is widely assumed that
time to complete PoW of new blocks is exponentially dis-
tributed, i.e., that blocks arrive to the network according to
a homogeneous Poisson process [5], [9], [13], [22], [27].
However, [2] indicates that non-homogenous Poisson process
might be a better match due to periodic adjustment of the
difficulty to compute the nonce in the block header. Block
propagation time is generally assumed to follow exponential
probability distribution [5], [27].

The importance of understanding the network layer of the
Bitcoin blockchain in order to prevent security attacks is
discussed in [7], [24]. Connectivity, join/leave procedures,
and communication strategy were mentioned as well, although
without qualitative or quantitative evaluation.

III. NODE CONNECTIVITY, RTT AND BLOCK SIZE

Topology of the BTC network is influenced by the type of
business and, to some extent, geographical/national factors. It
is well known that each BTC node can connect to 8 outbound
peers (nodes) and up to 125 inbound peers. While this seems to
imply that the links are unidirectional, it is just an unfortunate
choice of terms, as Bitcoin technical community information
explicitly states that outbound peers are ‘nodes that our node
goes out and finds’ while inbound peers refer to ‘nodes that
find us through the network’1. This is further confirmed by the
fact that both types of connections use TCP transport protocol
which is bidirectional by default and that Bitcoin protocol
includes message transmission in both directions, as explained
in Section IV below.

We hypothesize that this limitation has a rather interesting,
although perhaps unintended, consequence: namely, functional
partitioning into a highly connected core and lightly connected
edge. Namely, some of the BTC peers that have a small
number of connections – say, up to 8 or so – function as edge
servers that connect small businesses with the network core.
These business edge units (i.e., intra-business nodes) are con-
nected to the network core consisting of gateway nodes – either
general-purpose or business-specific ones – with much higher
connectivity that ensures fast propagation of transactions and
blocks throughout the network and, consequently, serves to
support efficient operation of Bitcoin distributed ledger. This
is the case with block mining, exchanges, gambling, and other
highly centralized businesses with high financial incentives
[21], which are likely to have nodes with high connectivity
which effectively result in network communities with high
clustering coefficient and modularity. It is also possible (and
economically justified) to have gateways set up by businesses
to share their connections between inter- and intra-business
interconnections. This type of sharing clearly reflects the social
network aspect of the BTC network [20].

The presence of partitioning seems to be confirmed by
empirical research that has found both edge nodes with
connectivity in the range from 5 to 13, and gateway nodes
with connectivity in the range above 14, with the highest
value around 60, even though the rules allow up to 125

1https://en.bitcoin.it/wiki/Bitcoin Core 0.11 (ch 4): P2P Network, last
accessed February 4, 2019



3

connections [6], [20]. An even larger number of connections
was reported in [21], but that observation (which no other
report has confirmed) might reflect the use of concurrent TCP
connections to increase the throughput, much like modern
browsers do. However, the increase in throughput is limited
by the available bandwidth of the node [10]; also, due to the
inherent fairness of TCP, the throughput per connection will
drop.

A. Modeling node connectivity

Let us now present the analytical sub-models that will be
used as building blocks of data delivery algorithm in the BTC
network.

Number of TCP connections of gateway BTC nodes follows
a scale-free long-tail distribution with parameter α in the
range 2 to 2.4, depending on the type of business type
and country [20]. Node degrees in the long-tail part of the
distribution range between 14 and 60. This distribution can be
characterized with a probability generating function (PGF) of

Lt(z) = L

60∑
k=14

1

kα
zk (1)

and with the scaling factor L = 1/
∑60
k=14

1
kα . The other

group of nodes have degrees in the range between 5 and
13 connections with a mean of about 8 [6], [21], [28]. For
non-gateway nodes, number of connections for each node
follows a truncated binomial probability distribution Cn(z) =∑13
k=5 pkz

k which ranges between 5 and 13 connections with
a mean of 8, i.e., Cn(1) = 1 and Cn′(1) = 8. Following [6],
[20], [21], [29] we assume that final connectivity distribution
can be obtained as

Mx(z) = km · Lt(z) + (1− km)Cn(z) =

i=mmax∑
i=mmin

mxiz
i

(2)

where mmin = 5 and mmax = 60. Value of weight coefficient
km can be in the range 0.3 to 0.7, with a note that it affects
network diameter. Resulting probability density function (pdf)
under α = 2 and km = 0.4, shown in Fig. 1(a), closely
resembles measured data from [6].

B. Modeling Round Trip Time (RTT)

According to [1], around 50% of IP addresses reside in
EU, 30% reside in North America and 20% reside in Asia;
similar results were reported in [10]. As our vantage point is
in North American continent, we can create total probability
distribution for RTT by combining per-continent segments
with exponential distribution, as follows:

1) within North America, RTT has a range of 0 to 100ms
with rate µNA = 1/0.05 so that its pdf in that region is
µNAe

−µNA(x−0.01)H(0.1−x)H(x−0.01), where H(x)
denotes piecewise Heaviside function defined as 1 when
x ≥ 0 and 0 when x < 0.

2) RTT between North America and EU has the range
between 100 and 200ms, with a rate of µEU = 1/0.15,

0

0.02

0.04

0.06

0.08

0.1

10 20 30 40 50 60

number of connections

(a) Distribution of number of connections per
node.

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4

RTT (seconds)

(b) CDF for the RTT.

Fig. 1. Regarding node connectivity.

so that its pdf in that region can be expressed as
µEUe

−µEU (x−0.1)H(0.2− x)H(x− 0.1).
3) RTT between North America and Asia has the range

between 200 and 400ms with a rate of µAS =
1/0.3, and its pdf in that region can be expressed as
µASe

−µAS(x−0.2)H(0.4− x)H(x− 0.2).

Thus the joint pdf of RTT has three distinct components:

fRTT (x) = Cf

(
0.3µNAe

−µNA(x−0.01)H(0.1−x)H(x−0.01)

+ 0.5µEUe
−µEU (x−0.1)0.2H(0.2− x)H(x−0.1)

+0.2µASe
−µAS(x−0.2)H(0.4− x)H(x− 0.2)

)
(3)

where Cf is derived from the condition of total probability as

Cf =

(∫ 0.4

x=0.01

(
0.3µNAe

−µNA(x−0.01)H(0.1−x)H(x−0.01)

+ 0.5µEUe
−µEU (x−0.1)0.2H(0.2− x)H(x− 0.1)

+ 0.2µASe
−µAS(x−0.2)H(0.4− x)H(x− 0.2)

)
dx
)−1

(4)

However, block and transaction distribution protocol re-
quires one RTT and a single one-way propagation time as
shown in Fig. 2. If we assume high correlation of propagation
times in both directions, then block/transaction distribution
protocol requires 1.5RTT. Its pdf f1.5RTT (x) can be calculated
similar to (3) but using 1.5 threshold values. Laplace-Stieltjes



4

transforms (LST) for single and double RTT can then be
computed as

L∗RTT (s) =

∫ 0.4

x=0.01

fRTT (x)e−sxdx

L∗1.5RTT (s) =

∫ 0.6

x=0.015

f1.5RTT (x)e−sxdx (5)

Resulting cumulative distribution function (CDF) is shown in
Fig. 1(b) and it closely resembles measured data from [1].
Furthermore, moments of this distribution are close to those
of an exponential distribution.

C. Modeling block and transaction transmission times

Time to transmit a block or transaction depends on their
length. In the period of 13 weeks between February 24 and
May 26, 2019, block size has ranged between 0.55MB and
1.1MB according to the information on the tracking sites2.
Block size distribution can be approximated by

B∗lk(β) =
e−6.8β+2e−7.45β+e−8.3β+2e−8.7β+7e−9.05β

13
(6)

expressed in hundreds of KBytes. Given the TCP throughput
of 2Mbps per connection which is compliant with real mea-
surements [10], this results in the distribution of transmission
times (in seconds) described with the LST transform of

L∗Tr(s) = B∗lk(0.4s) (7)

with mean block size and transmission time of around
850 KBytes and 3.4s, respectively.

Total block arrival rate in the network is λb,tot = 1
600

since one block is mined every 10min in the entire network
with N nodes. To model the existence of mining clusters
and to account for the impact of traffic injected through their
gateways [6], [10], [21], we assume that all nodes participate in
block distribution but only KfN of them inject mined blocks
to the network with a rate of λb =

λb,tot
KfN

where 0 < Kf < 1.
Mean transaction arrival rate ranges around 4.07 to 4.31 per

second according to the information available on the aforemen-
tioned tracking sites. We have assumed the total transaction
arrival rate per network of λt,tot = 4.31 per second. Due to
heterogeneity of Bitcoin businesses, it is reasonable to assume
that transaction arrival rate is uniform across the network with
a rate of λt = λt,tot/N . Transaction verification time has the
order of tens µs as well as its transmission time. Therefore
transaction processing time mostly depends on one and half
RTT and we assume that it follows the probability distribution
given by (5).

IV. DATA DISTRIBUTION AND PROPAGATION

We consider BTC network with N nodes where node
connectivity has PGF Mx(z) described in (2). Probability

that two nodes are connected is pb =

mmax∑
i=mmin

mxi
i

N
=
Mx

N
,

2https://bitinfocharts.com/bitcoin/ and https://www.blockchain.com/en/
charts/avg-block-size, last accessed May 26, 2019.

and the diameter of the network, DN,Mx(z), depends on the
network size and connectivity among the nodes.

Block and transaction delivery protocol follows a two-way
handshake over each TCP connection, as shown in Fig. 2.
Node which is the source of block or transaction will send
an inv (inventory) message to its direct neighbors. Node that
received inv message from neighboring node will send a
getdata request if it does not have block/transaction being
announced, or otherwise ignore the inv message. As the result,
blocks and transactions propagate through the network in
phases (generations).

We model data (i.e., block and transaction) forwarding
through the network using branching processes [14]. Propa-
gation protocol has the same behavior for the block that was
mined by the particular node or transaction that has arrived
to that node as the ingress of the overlay network. In the first
phase, source node will act as the root of the spanning tree of
the graph and transmit the data over all its TCP connections. Its
first hop neighbors comprise the first generation of nodes that
has received the data, which they will send out to their next-
hop neighbors (the second generation), and so on. For clarity,
we will assign index i = 0 . . . DN,Mx(z) − 1 to each phase
of the distribution protocol. The PGF for the number of nodes

in the first generation is H1(z) =

mmax,1∑
i=mmin,1

mxiz
i = Mx(z),

where Mx(z) is the connectivity PGF defined in (2). Mean
number of nodes in first data distribution phase (generation)
is H1 = H ′(1).

Since the probability distribution of the total number of
TCP connections per node is homogeneous over all nodes
and TCP connections are bidirectional, then each node is
source and destination for the same number of connections per
each generation i. However, we need to address the following
scenarios.

• In i-th phase of the distribution algorithm, some nodes
may be interconnected so they will not transmit data to
each other, as they already got it from a node in phase
i− 1.

• Furthermore, some nodes in the current generation i may
be connected to the same node in phase i+ 1 which will
decrease node population in generation i + 1. This also
decreases the number of TCP connections which a node
in generation i+ 1 will use to further distribute the data
to nodes in generation i+ 2.

The challenge in modeling the BTC gossip algorithm stems
from the fact that connections through which the node has
received a data item and connections towards the nodes that
already have that item cannot be used for data distribution.
Let Mxi(z), Loci(z), and Oi(z) denote the PGFs for the total
number of connections available for transmission to a node in
generation i, the number of connections towards other nodes in
the same generation i, and the number of connections available
to transmit data to nodes in generation i+ 1, respectively. For
a node in the first generation receiving data from the miner



5

Node A Node B

new block

verification

inv

getdata

block

Fig. 2. Data forwarding between neighbors.

(which acts as the root of the spanning tree), these PGFs are

Mx1(z) = Mx(z)/z (8)

Loc1(z) =

mmax,1∑
i=mmin,1

mxi

i−1∑
k=0

(
i− 1

k

)
pbkzk(1− pb)i−1−k

O1(z) =

mmax,1∑
i=mmin,1

mxi

i−1∑
k=0

(
i− 1

k

)
pbk(1− pb)i−1−kzi−1−k

Based on the equal number of output and input connections
for each phase, second generation node will have the number
of input connections described with PGF O1(z). After exclud-
ing local connections in the second generation, the number of
connections available to send data towards the third generation
nodes is

O2(z) =

mmax,1∑
i=mmin,1

mxi

i−1∑
k=0

(
i− 1

k

)
pbk(1− pb)i−1−k

·

i−1−k∑
l=1

(
i− 1− k

l

)
pbi−1−k−l(1− pb)lzl

i−1−k∑
l=1

(
i− 1− k

l

)
pbi−1−k−l(1− pb)l

(9)

As noted above, some of the connections going from the
first to the second generation may end at the same node. We
can model the number of overlapping connections coming to
the second generation node with the PGF of

Ot2(z) =

H1∑
k=1

(
H1

k

)
pbk(1− pb)H1−k · z1/k

H1∑
k=1

(
H1

k

)
pbk(1− pb)H1−k

(10)

Therefore, the PGF for the number of TCP connections
available to a node in second generation to continue data
distribution is

Mx2(z) = O2(Ot2(z))) (11)

which leads to the PGF for the number of nodes (population)
in the second generation of data distribution algorithm as

H2(z) = H1(Mx2(z)) (12)

Values of Mx2(z) and H2(z) are, then, used in a set of
equations analogous to (9) to (12) to compute node con-
nectivity and population for the third phase; this is repeated
with the next phase, for a total number of DN,Mx(z) − 1
phases. In each phase mean node populations in generation
i, i = 0 . . . DN,Mx(z) − 1 are calculated as Hi = H ′i(1), and
probability that a given node is reached in i-th generation is

Pti =
Hi

N
. (13)

Mean number of nodes reached in the last generation and
probability that data will not be forwarded can be then
computed as

HDN,Mx(z) = N −
DN,Mx(z)−1∑

i=0

Hi

Pnt = 1−
DN,Mx(z)−1∑

i=0

Pti (14)

V. TRANSACTION AND BLOCK RATES

The model from Section IV describes network distribution
of one data item. However nodes in the network can also inject
newly mined blocks for verification distribution, and any node
can inject new transactions for verification and distribution.
Therefore traffic offered to any network node consists of fresh
traffic to undergo further distribution and traffic which is in
the process of distribution over the network.

A new block is mined when all transactions within it are
valid and Proof of Work (PoW) is completed. Upon hearing
the newly mined block, nodes which are currently mining will
cancel their mining process. All nodes participate in block
distribution but, as mentioned in Section III, only KfN, 0 <
Kf < 1, nodes are injecting mined blocks to the network.

Due to finite data distribution time, competing blocks may
be mined and distributed through the network by two or more
nodes in the time window shorter than block distribution time.
This results in a fork, the situation in which different blocks are
linked as blockchain heads in different areas of the network.
Assuming that all nodes have the same computational power
(hashrate), Poisson arrival rate of new blocks per node can be
written as

λb =
1

600 ·KfN
(1 + Pfork) (15)

where Pfork denotes forking probability which will be derived
in Section VII below.

We assume that new transactions arrive to each node at
a rate of λt as stated in Section III. At each node of the
network, PGFs for the fresh traffic for blocks and transactions,
respectively, entering the network are

λb,0(z) = Kfz
λb + (1−Kf )z0 (16)

λt,0(z) = zλt



6

Let ωb and ωt denote output block and transaction rates,
respectively, from each node. For the initial phase i = 0, input
and output rates for block and transaction traffic are the same:

λb,0(z) = ωb,0(z) = Kfz
λb + (1−Kf )z0 (17)

λt,0(z) = ωt,0(z) = zλt

For each further phase i = 1 . . . DN,Mx(z) − 1, since TCP
connections are bidirectional, PGFs for the input and output,
block and transaction traffic are

λb,i(z) = Mxi(ωb,i−1(z)) (18)
λt,i(z) = Mxi(ωt,i−1(z))

ωb,i(z) = λb,i(z)

1− Pnt−
i−1∑
j=0

Ptj

+ Pnt+

i−1∑
j=0

Ptj

ωt,i(z) = λt,i(z)

1− Pnt−
i−1∑
j=0

Ptj

+ Pnt+
i−1∑
j=0

Ptj

Since each node distributes the data for all phases total
traffic offered to each node can be described with

λb,tot(z) =

DN,Mx(z)−1∏
j=0

λb,j(z) (19)

λt,tot(z) =

DN,Mx(z)−1∏
j=0

λt,j(z)

ωb,tot(z) =

DN,Mx(z)−1∏
j=0

ωb,j(z)

ωt,tot(z) =

DN,Mx(z)−1∏
j=0

ωt,j(z)

for blocks and transactions, respectively:
Therefore, input and output data rates from each node are

random variables due to the combination of distribution of
blocks and transactions in different phases and due to the ran-
dom connectivity of each node towards the rest of the network.
First two central moments of the output data rate distributions
for block traffic can be obtained from (19) as ωb,tot =
d
dzωb,tot(z)

∣∣
z=1

and var(ωb,tot) = d2

dz2ωb,tot(z)
∣∣∣
z=1

+ωbtot−
ωb,tot

2; corresponding values for transaction traffic can be
obtained in the analogous manner. We do not show expres-
sions for the third and fourth central moments due to space
restrictions.

Due to complexity of (19), we have modeled the probability
distribution of output data rates for blocks and transactions,
respectively, as Gamma distribution with densities of

fb(y) =
1

Γ(cω,b)
b
cω,b
ω,b y

cω,b−1e−y/bω,b (20)

ft(y) =
1

Γ(cω,t)
b
cω,t
ω,t y

cω,t−1e−y/bω,t (21)

where parameters of block and transaction traffic defined as

bω,b = var(ωb,tot)/ωb,tot (22)
cω,b = ωb,tot/bω,b

bω,t = var(ωt,tot)/ωt,tot (23)
cω,t = ωt,tot/bω,t

VI. QUEUING MODEL OF THE DISTRIBUTION NETWORK

Nodes receive blocks and transactions in different distribu-
tion phases over its TCP connections, but they receive and
forward only the data they don’t already have. Furthermore,
blocks and transactions join different pools for verification,
with the former given priority over the latter. This framework
can be modeled using the Jackson network approach [19]
applied to non-preemptive priority queues, as discussed in
[15], [16], [26]. This approach is justified as the block arrival
rate is much lower than the transaction arrival rate so the
adverse effect of the former (which has higher priority) on the
latter will not be high. Thus each node in the network has two
queues organized in priority order of blocks over transactions.
Each queue is fed by external arrivals of mined blocks and
new transactions, but the node also can eliminate a block or
transaction if they are already in the queue and there is no need
for further forwarding. Since data which will not be forwarded
do not join forwarding queues, input rate for one node consists
of output rates (of all protocol phases) of all nodes connected
to it.

A. Node response time for a block

Time to process and forward a single block consists of
block verification time, time to exchange inventory and getdata
messages which consists of one and half mean round trip times
(RTT-s), and time to transmit the block. Block verification time
has the order of few milliseconds, while one and half RTTs
with a cumulative distribution shown in (3) and (5) have a
mean value around 0.19s. Probability distribution of the block
transmission time over TCP connection is given by (7). The
distribution of block processing time can be described with
the LST of

B∗b (s) = L∗1.5RTT (s)L∗Tr(s) (24)

Probability density function of block service time bb(x) can
be found using properties of LST [19] as

bb(x) =
1

13
(f1.5RTT (x− 2.72) + 2f1.5RTT (x− 2.96)

+ f1.5RTT (x− 3.32) + 2f1.5RTT (x− 3.48)

+ 7f1.5RTT (x− 3.62)) (25)

Transaction verification and transmission times are much
smaller than 1.5RTT which is why the pdf of transaction
service time may be approximated with bt(x) = f1.5RTT (x).

For non-preemptive priority M/G/1 analysis of block and
transaction queues [30] we need probability distributions of
the number of block arrivals during block service time, the
number of block arrivals during transaction service time, and
the number of transaction arrivals during transaction service



7

time, the PGFs of which will be denoted with Ab(z), Abt(z),
and At(z), respectively.

A specific challenge in this model is that arrival rates
of Poisson processes for blocks and transactions, ωb,tot and
ωb,tot, are random and the framework from [30] had to
be modified. To calculate probability distributions of arrival
process during block and transaction service times, we need
to derive individual arrival probabilities:

ab,k =

∫ ∞
y=0

∫ ∞
x=0

(xy)k

k!
e−xyfb(y)bb(x)dxdy (26)

abt,k =

∫ ∞
y=0

∫ ∞
x=0

(xy)k

k!
e−xyfb(y)bt(x)dxdy

at,k =

∫ ∞
y=0

∫ ∞
x=0

(xy)k

k!
e−xyft(y)bt(x)dxdy

from which we can derive the corresponding PGFs:

Ab(z) =

∞∑
k=0

ab,kz
k

=

∫ ∞
y=0

∫ ∞
x=0

e−xy(1−z)fb(y)bb(x)dxdy

=

∫ ∞
y=0

B∗b (y(1− z))fb(y)dy (27)

Abt(z) =

∞∑
k=0

abt,kz
k

=

∫ ∞
y=0

∫ ∞
x=0

e−xy(1−z)fb(y)bt(x)dxdy

=

∫ ∞
y=0

B∗t (y(1− z))fb(y)dy (28)

At(z) =

∞∑
k=0

at,kz
k

=

∫ ∞
y=0

∫ ∞
x=0

e−xy(1−z)ft(y)bt(x)dxdy

=

∫ ∞
y=0

B∗t (y(1− z))ft(y)dy (29)

Computational complexity of Taylor series expansion of
the PGF is rather high but we found that about 24 series
members for At(z) and six series members for Ab(z), Abt(z)
provide sufficient accuracy of 10−6, although the exact number
depends on the load. Block traffic (higher priority) PGF for
the number of blocks left in the queue after a block departure
and LST for the block response time have the following form:

PPb(z) = Ab(z)· (30)
ωt,totAbt(z)− (ωtot − ρωb,tot) + z(1− ρtot)ωb,tot

ωb,tot(z −Ab(z))

T ∗b (s) = B∗b (s)
(1− ρtot)s+ ωt,tot(1−B∗t (s))

s− ωb,tot + ωb,totB∗b (s)
(31)

where ωtot = ωb,tot + ωt,tot, ρb,tot = ωb,tot/µb, ρt,tot =
ωt,tot/µt and ρtot = ρb,tot + ρt,tot. Then, k-th moment of
node response time for blocks can be obtained as

Tb
(k)

= (−1)k
dk

dsk
T ∗b (s)

∣∣∣∣
s=0

(32)

Coefficient of variation, skewness, and kurtosis for node
response time for blocks are calculated as

cv(Tb) =

√
(Tb

(2) − Tb)/Tb (33)

sk(Tb) =
Tb

(3) − 3Tb(Tb
(2) − Tb

2
)− Tb

3(√
(Tb

(2) − Tb)
)3 (34)

kt(Tb) =
Tb

(4) − 4TbTb
(3)

+ 6Tb
(2)
Tb

2 − 3Tb
4(√

(Tb
(2) − Tb)

)4 (35)

B. Node response time for transactions

Transactions have lower priority and response time for
transactions needs to include the entire busy period for block
service. To this end, we need to find PGF F (z) for the number
of blocks served in the busy period of the node. This PGF can
be found from the difference equation [30] as

F (z) = zB∗b (ωb,tot − ωb,totF (z)) (36)

which can be solved by expanding both sides into power series
and equating the corresponding coefficients. The LST for the
block busy period can be found as

Φ∗(s) = F (B∗b (s)) (37)

The PGF for the number of transactions left in the queue after
transaction departure and LST for the transaction response
time can be written as

PPt(z) =
At(z)((1− ρtot)σ∗ + ωt,tot(1−B∗t (σ∗))

ωt,tot(B∗t (σ∗)− z)

T ∗t (s) = B∗b (s)
(1− ρtot)σ

s− ωt,tot + ωt,totB∗t (σ)
(38)

where σ = s + ωb,tot(1 − Φ∗(s)) and σ∗ = (ωb,tot +
ωt,tot) − zωt,tot − ωb,totΦ

∗ (ωt,tot(1− z)). k-th moment of
node response time for transactions can be found as Tt

(k)
=

(−1)k dk

dsk
T ∗t (s)

∣∣∣
s=0

.

C. Data distribution time

Using the probabilities of phases in the data distribution
protocol calculated in Section IV, we can calculate the LST
of the duration of total block/transaction distribution as

Ξ∗b(s) =

DN,Mx(z)−1∑
i=0

Pti(T
∗
b (s))(i+1) + Pnt(T ∗b (s))(DN,Mx(z)+1)

(39)

Ξ∗t (s) =

DN,Mx(z)−1∑
i=0

Pti(T
∗
t (s))(i+1) + Pnt(T ∗t (s))(DN,Mx(z)+1)

from which all necessary moments of distribution time can be
found. Due to complexity of (39), it is hard to get probability
density functions using inverse transformation. Instead we



8

have estimated data distribution time using Gamma distribu-
tion with probability density function as

fn,b(x) =
1

Γ(cn,b)
b
cn,b
n,b x

(cn,b−1)e−x/bn,b (40)

fn,t(x) =
1

Γ(cn,t)
b
cn,t
n,t x

cn,t−1e−x/bn,t

where values bn,b, cn,b, bn,t, cn,t are defined by

bn,b = var(Ξb)/Ξb, cn,b = Ξb/bn,b

bn,t = var(Ξt)/Ξt, cn,t = Ξt/bn,t (41)

VII. FORKING

Normal operation of Bitcoin’s distributed ledger assumes
that all nodes have the same list of linked blocks, with all
ledgers having the same block Y as the head of their respective
chains. However it is possible that two or more competing
blocks are mined and sent out during the time window when
neither of the blocks has completed distribution through the
network. The set of block transactions may overlap in part
or in full, except for the so-called coinbase transactions that
allocates the mining fee to the miner node and, therefore, must
be specific to each block [22].

Let us assume that block A has been mined at time t0 and
is in the process of distribution, and that at time t0 < t1 <
Ξb another node mines block B and begins distributing it to
the network. As the result, some nodes will link block A as
the head, while others will link block B at the head of their
local ledger. This creates two partitions with different heads
in the blockchain and creates a fork – an inconsistent state in
distributed ledger, as shown in Fig. 3. It is possible to have
multiple-way forking but its probability is very low and we
will neglect it in further considerations.

Inconsistency is resolved by the arrival of a new block C. In
one case, block C arrives after blocks A and B have finished
propagation, as shown in the top diagram of Fig. 4, and we
need to consider the partition in which the block C is mined.
In the originating partition with, say, A as the head, block C
will be linked to A without a problem and become the new
main head; in non-originating partition, with B as the head,
block C will become the main head by virtue of its height
(i.e., distance from the beginning of blockchain – the genesis
block) exceeding that of the current head while B will become
a side head. Transactions that are unique to the new side head
(i.e., not contained in the new head) will be moved back to the
transaction pool buffer and considered unconfirmed in nodes
from non-originating partition.

in the other case, block C may be mined while previous
block(s) are still in the process of distribution, as shown in
the lower diagram of Fig. 4. Nodes that know of A or B will
process the new block in the manner similar to the case above.
Nodes that do not know yet of either A or B will treat C as
an orphan block: i.e., they will request its previous block(s)
from the transmitting node before processing it and eventually
appending it to its blockchain.

node k

node i

block
X

block
Y

block
A

block
B

...

current 
main tip

...

current 
main tip

B received later, 
becomes a side tip

A received first, 
becomes new main tip

block
X

block
Y

block
A

block
B

...

A received later, 
becomes a side tip

B received first, 
becomes new main tip

Fig. 3. Two-way fork with a main and a side head.

block C

block A

block B

time

interval of ledger inconsistency

block C

block A

block B

time

interval of ledger inconsistency

Case 1: C mined after A and B have finished distributing

Case 2: C mined before A and B have finished distributing

Fig. 4. Inconsistency period for a two-way fork.

A. Forking probability and partition sizes

The information we have about block distribution allows
us to develop forking probability for different distribution
phases of block A. Let Pth∗i (s) = T ∗b (s)i denote the LST
of the path delay over 1 ≤ i ≤ DN,Mx(z) hops; the
corresponding probability density function can be obtained
through appropriate Gamma functions using moments defined
in (32):

bpt,i = var(Pthi)/Pthi = Tb
(2)
/Tb

cpt,i = iTb/bpt,i

fpt,i(x) =
1

Γ(cpt,i)
b
cpt,i
pt,i x

(cpt,i−1)e−x/bpt,i (42)

Approximation (42) is valid since block traffic has low inten-
sity and has priority over transaction traffic.

We also note that a total of cvi =
∑i−1
j=0Hi nodes have

already received block A at the moment when i-th distribution
phase of this block begins. For completeness, we assume that
cv0 = H0 = 1 and Pfork,0 = 0. Then, the probability that
block B appears (i.e., is mined) when block A is in its i-th
distribution phase, is

Pfork,i =

∫ ∞
x=(i−1)Tb

(1− e−Kf (N−cvi)λbx))·

1

Γ(cpt,i)
b
cpt,i
pt,i x

cpt,i−1e−x/bpt,idx (43)



9

Mean forking probability over all distribution phases is

Pfork =

DN,Mx(z)∑
i=1

PtiPfork,i (44)

Unfortunately Pfork from (44) participates in block arrival
rate defined by (15). This creates the need to iteratively solve
a system of equations starting from low tentative values, say
P 0
fork = 0.001, until the difference between Pfork values

computed in two successive iterations drops below a prede-
fined threshold.

Probabilities Pfork,i also include information about sizes of
forked blockchain partitions since block A is already linked
in generations 0 . . . i − 1. Also, all nodes from generation
Hi−1 are distributing block A while only the miner node of
block B begins its distribution. Therefore, the remaining nodes
(assuming that each node has connectivity PGF Mx(z)) will
link blocks A or B with probabilities PA,i = Hi−1

Hi−1+1
and

PB,i = 1
Hi−1+1

, respectively. This further means that mean
sizes of partitions Ai and Bi formed when block B appears
while block A is in its i-th distribution phase, are approxi-
mately Ai = cvi + (N − cvi)PA,i and Bi = (N − cvi)PB,i.

B. Duration of ledger inconsistency

Period of inconsistency depicted in Fig. 4 begins when block
A is mined, proceeds with mining and distribution of blocks B
and C, and ends when block C is linked in the whole network.
Since block C arrives at a random point in distribution time
of block B, we need the probability distribution of remaining
distribution time of block B after the arrival of block C. Based
on LST for the probability distribution of block distribution
time from (39), we will calculate the LST for the elapsed and
remaining block distribution time as

Ξ∗b,−(s) = Ξ∗b,+(s) =
1− Ξ∗b(s)

sΞ
(45)

Let T ∗l (s) denote the LST of block linking time as main or
side tip; note that it is much smaller than block distribution
time. The period of ledger inconsistency due to a fork may be
obtained as a weighted sum of durations of inconsistency of
scenarios from Fig. 4; it can be expressed as

T ∗i,1(s) = PforkΞ∗b,−(s)2Ξ∗b(s)T
∗
l (s)

+ (1− Pfork)Ξ∗b,−(s)I∗b (s)Ξ∗b(s)T
∗
l (s)

It is possible to have multiple consecutive forking events,
i.e., that instead of the arrival of a single block that will
resolve the fork, two new blocks arrive that build on different
partitions and thus prolong the fork. In the general case, the
inconsistent state may consist of any number of consecutive

forking events which leads us to the general expression for the
distribution of inconsistency time of the ledger:

T ∗i (s) = (1− Pfork)Ξ∗b(s) +

∞∑
k=1

(1− Pfork)P kforkT
∗
i,k(s)

= (1− Pfork)Ξ∗b(s)

+
(1− Pfork)PforkΞ∗b,−(s)Ξ∗b(s)T

∗
l (s)

1− PforkΞ∗b,−(s)I∗b (s)

·
(
PforkΞ∗b,−(s) + (1− Pfork)I∗b (s)

)
(46)

where T ∗i,k(s) = (1 − Pfork)Ξ∗b,−(s)kI∗b (s)kΞ∗b(s)T
∗
l (s) +

PforkI
∗
b (s)(k−1)Ξ∗b,−(s)(k+1)Ξ∗b(s)T

∗
l (s).

Note that the first term in (46) corresponds to the time
for a block to propagate through the network and update the
blockchain ‘regularly,’ while the second describes the time
required to resolve a fork. Hence the last equation effectively
describes the time needed to reach the consensus in the Bitcoin
network.

VIII. PERFORMANCE RESULTS

Our evaluation was conducted for BTC network size varied
from N = 2500 to 5000 in steps of 250. Connectivity of each
node was modeled using PGF Mx(z) defined in (2) with km =
0.4 while the long-tail parameter in (1) was set to α = 2 in
order to match empirical results from [6]. Consequently, mean
number of connections per node was around Mx′(1) ≈ 15.4
and network diameter was DN,Mx(z) = 4 in the range of
network sizes under investigation.

Portion of nodes that are injecting newly mined blocks into
the network was set to Kf = 1 and Kf = 0.5, respectively.
Total new transaction arrival rate per network is λt,tot = 4.31
per second, and λt = λt,tot/N per node.

A. Node connectivity and data distribution

Mean number of nodes reached in each phase is shown
in Fig. 5(a), where the lowest line corresponds to N = 2500
while the highest one corresponds to N = 5000; lines between
these are monotonically ordered. All lines show exponential
increase of mean population in each generation until the third,
at which point the gradient towards the fourth generation
becomes negative. Probability of a node belonging to i-th
generation, Fig. 5(b), is obtained by dividing mean size of
a generation size by network size. As the result, probability
that a node belongs to the fourth generation is highest when
N = 2500 and lowest when N = 5000, since network size
is increasing but the connectivity distribution Mx(z) does not
change.

B. Data arrival rates

Total transaction arrival rates to a node are shown in
FIg. 6(a), with circles and lines corresponding to results for
Kf = 0.5 and Kf = 1, respectively. As can be seen, the
mean value, coefficient of variation, and skewness are virtually
identical for both values of Kf . (Similar observation applies to
kurtosis, except that its value is in the range of 12 to 18, which
is why it is not shown here.) Mean arrival rate decreases with



10

0

500

1000

1500

2000

2500

0 1 2 3 4

block/transaction distribution phase

N=2500

N=5000

2750

3000

3250

3500

3750

4000

4250

4500

4750

(a) Mean number of nodes reached in i-th phase.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4

block/transaction distribution phase

N=2500

N=5000

3000

3500

4000

4500

(b) Probability that a node is reached in i-th
phase.

Fig. 5. Data distribution in the network.

network size while both coefficient of variation and skewness
show a mild linear increase. This is due to large size of
the network and rich connectivity (but with homogeneous
distribution) between nodes, which means that most of the
traffic coming to a node is actually data relayed from other
nodes, rather than data generated locally. On account of this,
in the discussions that follow we will show only the results
for Kf = 1.

Another important observation is that block and transaction
arrival rates behave in the same manner, as can be seen from
Fig. 6(b) which shows mean transaction arrival rate to a node
(line) as well as mean block arrival rate (boxes) but scaled to
the value of mean transaction arrival rate at N = 2500 nodes.
This stems from the fact that data propagation through the
network follows the same pattern regardless of the type of data,
i.e., is it a block or a transaction. Mean arrival rates decrease
with network size due to the higher volume of relaying traffic
to that generated locally, as the total transaction arrival rate to
the network is kept at a constant value.

C. Queuing performance of block traffic

Results of queuing analysis for block traffic are shown in
Fig. 7 for Kf = 1; results for Kf = 0.5 are virtually identical,
as explained above. Fig. 7(a) describes node response time
for blocks. Mean value is very close to the sum of mean
block transmission time, 1.5RTT, and small waiting time in
the queue. It shows very small decline with network size due
to decrease of the waiting time in the queue. Coefficient of
variation changes is rather low and changes very little, from
about 0.15 to 0.1, in the observed range of the number of

0.5

1.5

2.5

2500 3000 3500 4000 4500 5000

number of nodes

3.0

2.0

1.0

skewness

coeff. of variation

mean

(a) Pertaining to transaction arrival rates to a node.
Circles: Kf = 0.5, lines: Kf = 1.

0.4

0.6

0.8

1.2

1.4

1.6

1.8

2500 3000 3500 4000 4500 5000

number of nodes

1.0

mean arrival rate

for blocks: boxes

mean arrival rate for

transactions: line

(b) Mean arrival rates for transactions (line) and
blocks (boxes) per node.

Fig. 6. On data arrival rates.

nodes, while skewness ranges between 5 and 0 (for N = 2500
and N = 5000 respectively). Kurtosis is in the range between
20 and 10 for the same span of network sizes, hence it is
not shown due to scaling with other parameters. Those values
indicate that the distribution of node response time becomes
narrower and more symmetric when the number of nodes
increases and that the thickness of distribution tails becomes
smaller. This is to be expected since the probability distribution
of block sizes is close to uniform distribution and waiting time
in the block queue decreases with the decrease of the total
block arrival rate.

Network distribution time for blocks, shown in Fig. 7(b),
is additionally influenced by the block distribution protocol.
Mean number of hops in the distribution algorithm (shown
with circles) increases by only 10% in the observed range of
network sizes, on account of nearly constant network diameter
and high number of links available. Mean block delivery time
increases by almost the same amount, from 14.6s to about 16s,
when the network size doubles from 2500 to 5000 nodes. At
the same time, coefficient of variation is only around 0.15;
skewness is between 0.8 and -0.6 which indicates thin distri-
bution tails with right- and left-hand orientation, respectively;
and kurtosis is smaller than 3. These results indicate that block
propagation time follows a distribution close to the normal
one, rather than exponential as reported in [5], [27]. The
difference is likely due to different values of parameters such
as network size and the fact that measurements on the real
BTC network disrupt its operation, as noted in Section II.



11

0

1

2

3

4

5

2500 3000 3500 4000 4500 5000

number of nodes

skewness

coeff. of variation

mean value

(a) Block response time in a node.

0

2

4

6

8

10

12

14

16

2500 3000 3500 4000 4500 5000
number of nodes

skewness

coeff. of variation

mean value

kurtosis

mean number of hops

during distribution

(b) Block delivery time in the entire network.

Fig. 7. Performance of block traffic.

D. Queuing performance of transaction traffic

Transaction traffic has lower priority than block traffic,
hence node response time for transactions reflects the dy-
namics of both traffic types. Fig. 8(a) shows mean value of
response time which is lower than that for blocks due to
much smaller transaction size, together with its coefficient of
variation, skewness, and kurtosis. Since block and transaction
traffic intensity declines with the increase of network size,
as seen in Fig. 6, mean node response time shows a mild
decrease due to the decrease of waiting time at the node
buffer. It approaches transaction service time when the network
size increases beyond 3000 nodes. Coefficient of variation has
a value below 1, while skewness decreases from about 2.8
to below 1.4, which is below, but still close to exponential
distribution. Kurtosis has values from 18 to 7 in the observed
range of network sizes.

Parameters of network distribution time, mean value, co-
efficients of variation, skewness and kurtosis, are shown in
Fig. 8(b), respectively. As can be seen, mean distribution time
for transactions drops to about k times the value of transaction
service time at network sizes above 3000. Such behavior is
close to general Erlang-k distribution with parameter k in the
range of 3 to 4.

E. Forking and inconsistency period

Probability of forking when a newly mined block B appears
in the network during the i-th distribution phase of the original
block A, 1 ≤ i ≤ DN,Mx(z), is shown in Fig. 9(a). In this
case, the variable parameter is the distribution phase of the

0

2

4

6

8

10

12

14

16

18

2500 3000 3500 4000 4500 5000

number of nodes

skewnesscoeff. of variation

mean value

kurtosis

(a) Transaction response time of a node.

1

2

3

4

5

6

2500 3000 3500 4000 4500 5000

number of nodes

skewnesscoeff. of variation
mean value

kurtosis

(b) Transaction delivery time in the entire network.

Fig. 8. Performance of transaction traffic.

block that was first to appear (i.e., block A in our discussions
above); mean value over all phases is shown with circles.
Probability of forking in first three distribution phases from
Fig. 9(a) somewhat resembles the shape of mean block arrival
rate shown in Fig. 6. However, partial forking probability in
phase 4 increases in rough proportion to network size, which is
due to increased arrival rate of competing block(s) (block B in
our discussions above), since node populations in early phases
of block distribution are limited by node connectivity. Overall
forking probability calculated via (44) first decreases with
network size but then shows a slight increase when network
size exceeds 4000 nodes which is due to the increased impact
of forking in the last phase of block distribution. We note that
mean forking probability of 1.6 to 1.8% is close to the value
of 1.69% reported in [5].

Fig. 9(b) shows the size of the partitions where nodes
have linked block A when block B appears in the network,
normalized to the size of the entire network. As these values
are virtually independent of network size, we show them as
the function of the distribution phase (1, 2, 3 and 4) of the first
block to appear in the network. We observe that the partition
size is about 0.5 (i.e., partitions with blocks A and B at the
head of the respective blockchains have similar sizes) only if
block B is mined during the first distribution phase of block
A. When the original block A has progressed to the second or
later distribution phases when block B appears in the network,
A’s partition at the end of distribution will contain a majority
of the nodes: about 94% for the second phase, and more than
98% and 99% for the third and fourth phases, respectively.



12

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

2500 3000 3500 4000 4500 5000
number of nodes

phase 3

phase 2

phase 1

phase 4

mean value

(a) Forking probability.

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4
distribution phase of the first block

(b) FIrst block partition size.

Fig. 9. Pertaining to forking.

Periods of distributed ledger inconsistency are shown in
Fig. 10. Mean inconsistency period (solid line) after a single
two-way fork and its standard deviation (circles) are shown
in Fig. 10(a) while skewness (not shown) is around 2. This
period is strongly influenced by the exponentially distributed
time between block arrivals while block distribution time
contributes to around 10% of the value even with forking
probability of around 1.5%. However, given the current trend
of increasing the network size and block size, forking proba-
bility and duration/characteristics of inconsistent period may
well increase in future.

General inconsistency time between two block arrivals is
presented in Fig. 10(b) for the mean value (solid line), standard
deviation (circles), and skewness (diamonds), respectively.
Here we make important observation that although mean
inconsistency time of around 11 to 12 seconds is only about
2% of block interarrival time, standard deviation is higher than
100 seconds and coefficient of skewness is higher than 15,
indicating a heavy tail. This confirms the impact of forking that
may lead to occasional long periods of inconsistency, perhaps
exceeding minutes in duration.

IX. CONCLUSION

In this work we have developed the analytical model of
data delivery protocol over the Bitcoin blockchain network.
Model incorporates many recent measurement results from the
literature. We have also developed a priority-based queuing
model of Bitcoin nodes and a Jackson network model of the
whole network. These models give probability distributions of
node populations in data distribution phases, response time

500

520

540

560

580

600

2500 3000 3500 4000 4500 5000

number of nodes

standard deviation

mean value

(a) Duration of ledger inconsistency under single
fork event.

20

40

60

80

100

skewness
mean value

standard deviation

2500 3000 3500 4000 4500 5000

number of nodes

(b) General ledger inconsistency.

Fig. 10. Pertaining to ledger inconsistency due to forking.

of nodes, and network distribution times for both block and
transaction traffic.

The results presented show strong qualitative and quantita-
tive dependency of network performance on the distribution
of node connectivity and network size. We have shown that
relayed data arrive to nodes according to a non-homogeneous
Poisson process and that rich relayed traffic overwhelms the
traffic injected by the node itself, be it as mined blocks or
new transactions. We also show that data distribution time
in the network is sub-exponential and that the intensity of
transaction traffic does not significantly affect performance
of block traffic due to its higher priority. We demonstrate
the use of the combined model on the calculation of forking
probability, size of network partitions created by forking,
and the duration of ledger inconsistency period. Our results
indicate that node connectivity, network and block size are
major factors affecting block forking probability and duration
of inconsistent period.

The model described in the paper will be extended to ana-
lyze probabilities of success of events such as orphaned blocks,
transaction handling, and attacks such as double spending
and others [5], [24], [27]. It can also be used to predict
performance changes under increase/decrease of block size,
node connectivity, number of nodes, and other effects caused
by changes of business profiles in the network.

REFERENCES

[1] S. Ben Mariem, P. Casas, and B. Donnet. Vivisecting blockchain P2P
networks: Unveiling the Bitcoin IP network. In ACM CoNEXT Student
Workshop, 2018.



13

[2] R. Bowden, H. P. Keeler, A. E. Krzesinski, and P. G. Taylor. Block
arrivals in the Bitcoin blockchain. arXiv preprint arXiv:1801.07447,
2018.

[3] M. Campbell-Verduyn. Bitcoin and Beyond: Cryptocurrencies,
Blockchains, and Global Governance. Routledge, 2018.

[4] S. Davidson, P. De Filippi, and J. Potts. Economics of blockchain. In
Proc. of Public Choice Conference, Ft. Lauderdale, FL, May 2016.

[5] C. Decker and R. Wattenhofer. Information propagation in the Bitcoin
network. In Proc. 13th IEEE Int. Conf. Peer-to-Peer Computing
(P2P’13), volume 26, 2013.

[6] S. Delgado-Segura, S. Bakshi, C. Pérez-Solà, J. Litton, A. Pachulski,
A. Miller, and B. Bhattacharjee. TxProbe: Discovering Bitcoin’s network
topology using orphan transactions. arXiv preprint arXiv:1812.00942,
2018.

[7] S. Delgado-Segura, C. Pérez-Solà, J. Herrera-Joancomartı́, G. Navarro-
Arribas, and J. Borrell. Cryptocurrency networks: A new P2P paradigm.
Mobile Information Systems, 2018.

[8] J. A. D. Donet, C. Pérez-Sola, and J. Herrera-Joancomartı́. The Bitcoin
P2P network. In Int. Conference on Financial Cryptography and Data
Security, pages 87–102. Springer, 2014.

[9] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is
vulnerable. arXiv preprint arXiv:1311.0243, 2013.

[10] A. E. Gencer, S. Basu, I. Eyal, R. Van Renesse, and E. G. Sirer.
Decentralization in Bitcoin and Ethereum networks. arXiv preprint
arXiv:1801.03998, 2018.

[11] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun. On the security and performance of proof of work
blockchains. In ACM SIGSAC Conf. Computer Comm. Security, pages
3–16. ACM, 2016.

[12] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Čapkun. Tampering with
the delivery of blocks and transactions in Bitcoin. In 22nd ACM SIGSAC
Conf. Computer Comm. Security, pages 692–705. ACM, 2015.

[13] J. Göbel, H. P. Keeler, A. E. Krzesinski, and P. G. Taylor. Bitcoin
blockchain dynamics: The selfish-mine strategy in the presence of
propagation delay. Performance Evaluation, 104:23–41, 2016.

[14] G. R. Grimmett and D. R. Stirzaker. Probability and Random Processes.
Oxford University Press, Oxford, UK, 2nd edition, 1992.

[15] M. Harchol-Balter and T. Osogami. Multi-server queueing systems
with multiple priority classes,. Performance Evaluation, pages 331–360,
2005.

[16] E. Kao and K. Narayanan. Computing steady-state probabilities of a non-
preemptive priority multiserver queue. Journal on Computing, 2(3):211–
218, 1990.

[17] G. O. Karame, E. Androulaki, and S. Capkun. Double-spending fast
payments in Bitcoin. In Proc. 2012 ACM conference on Computer and
communications security, pages 906–917. ACM, 2012.

[18] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized ru-
mor spreading. In 41st Annual Symposium on Foundations of Computer
Science, pages 565–574, Redondo Beach, CA, 2000.

[19] L. J. Kleinrock. Queuing Systems, volume I: Theory. John Wiley and
Sons, New York, 1972.

[20] M. Lischke and B. Fabian. Analyzing the Bitcoin network: The first
four years. Future Internet, 8(1):7, 2016.

[21] A. Miller, J. Litton, A. Pachulski, N. Gupta, D. Levin, N. Spring, and
B. Bhattacharjee. Discovering Bitcoin’s public topology and influential
nodes. report, 2015.

[22] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
[23] T. Neudecker, P. Andelfinger, and H. Hartenstein. A simulation model

for analysis of attacks on the Bitcoin peer-to-peer network. In IFIP/IEEE
Int. Symp. Integrated Network Mgmnt (IM), pages 1327–1332, 2015.

[24] T. Neudecker and H. Hartenstein. Network layer aspects of permis-
sionless blockchains. IEEE Communications Surveys Tutorials, 2018.
10.1109/COMST.2018.2852480.

[25] S. Neumayer, M. Varia, and I. Eyal. An analysis of acceptance policies
for blockchain transactions, 2018. https://hdl.handle.net/2144/31455.

[26] T. Nishida. Approximate analysis for heterogeneous multiprocessor
systems with priority jobs. Performance Evaluation, 15(2):77–88, 1992.

[27] N. Papadis, S. Borst, A. Walid, M. Grissa, and L. Tassiulas. Stochastic
models and wide-area network measurements for blockchain design and
analysis. In IEEE INFOCOM, pages 2546–2554, 2018.

[28] G. Pappalardo, G. Caldarelli, and T. Aste. The Bitcoin peers network.
In 2nd Int. Workshop P2P Financial Systems, London, UK, Sept. 2016.

[29] D. Ron and A. Shamir. Quantitative analysis of the full Bitcoin
transaction graph. In Int. Conf. Financial Cryptography and Data
Security, pages 6–24. Springer, 2013.

[30] H. Takagi. Queueing Analysis, volume 1: Vacation and Priority Systems.
North-Holland, Amsterdam, The Netherlands, 1991.

Jelena Mišić (M’91, SM’08, F’18) is Professor of
Computer Science at Ryerson University in Toronto,
Ontario, Canada. She has published 4 books, over
125 papers in archival journals and close to 190
papers at international conferences in the areas of
computer networks and security. She serves on edito-
rial boards of IEEE Transactions on Vehicular Tech-
nology, IEEE IoT Journal, IEEE Network, Computer
Networks and Ad hoc Networks. She is a Fellow of
IEEE and Member of ACM.

Vojislav B. Mišić (M’92, SM’08) is Professor of
Computer Science at Ryerson University in Toronto,
Ontario, Canada. His research interests include per-
formance evaluation of wireless networks and sys-
tems and software engineering. He serves on the ed-
itorial boards of IEEE transactions on Cloud Com-
puting, Ad hoc Networks, Peer-to-Peer Networks and
Applications, and International Journal of Parallel,
Emergent and Distributed Systems. He is a Senior
Member of IEEE and member of ACM.

Xiaolin Chang is Professor at the School of Com-
puter and Information Technology, Beijing Jiaotong
University. Her current research interests include
edge/cloud computing, network security, security
and privacy in machine learning.

Saeideh Motlagh is currently a doctoral student
at Ryerson University, Toronto, Canada. Her re-
search interests include data distribution protocols
in blockchain technology and applications.

M. Zulfiker Ali (S’17) is currently a post-doctoral
research fellow at Ryerson University, Toronto,
Canada. He received his PhD in Computer Science
from Ryerson University in 2018. His research inter-
ests include wireless networking, Internet of Things
and performance evaluation.


